Giả sử:
\(A=\left\{1;2\right\}\)
\(B=\left\{1;2;3\right\}\)
\(\Rightarrow\text{ A là tập hợp con của B}\)
\(\text{Lại có: }A\subset B=\left\{1,2\right\}=A\)
Vậy ta suy ra ĐPCM
Giả sử:
\(A=\left\{1;2\right\}\)
\(B=\left\{1;2;3\right\}\)
\(\Rightarrow\text{ A là tập hợp con của B}\)
\(\text{Lại có: }A\subset B=\left\{1,2\right\}=A\)
Vậy ta suy ra ĐPCM
B1 : cmr nếu x,y là 2 số thực sao cho x khác -1, y khác -1 thì x+y+xy khác -1
B2: cmr nếu a,b là các số tự nhiên sao cho a nhân b là số lẻ thì a,b là số lẻ
CMR với mọi tập A,B,C ta có
a)A giao B=A\(A\B)
b)A\(B hợp C)=(A\B) giao (A\C)
CMR: a) "n là số chẵn khi và chỉ khi 7n+4 là số chẵn" b) Nếu a2 chia hết cho 2 thì a chia hết cho 2 c) Nếu a2 chia hết cho 6 thì a chia hết cho 6 d) Nếu a2 chia hết cho 7 thì a chia hết cho 7
Bài 25: Cho A = {0; 1; 2; 4} ; B = {0; 2; 3; 5; 7} . 1/ Tìm A giao B, A hợp B, A \ B, B \ A . 2/ Chứng tỏ: ( A \ B) con A; A \(A\ B)=A giao B .
Xét hai tập hợp A, B và các khẳng định sau:
(I) Nếu B ⊂ A thì A ∩ B = B
(II) Nếu A ⊂ B thì A ∪ B = A
(III) Nếu B ⊂ A ( B ≠ A ) thì A \ B = ∅
(IV) Nếu A ∩ B = ∅ thì A \ B = A
Trong các khẳng định trên, có bao nhiêu khẳng định là mệnh đề đúng?
A. 1
B. 2
C. 3
D. 4
CMR: Nếu \(|a|+|b|\ge2\) Thì PT sau có nghiệm
\(2ax^2+bx+1-a=0\)
Cho A={x€R/2x-2≥0} B={x€R/9-3x≥0} a) biểu diễn A,B thành khoảng,đoạn ,nửa khoảng b)Tìm A giao B ,A hợp B , A\B,B\A c) Liệt kê các tập hợp con của tập hợp
Cho A= \(\left\{x\in Z|x^2< 4\right\}\) B=\(\left\{x\in Z|\left(5x-3x\right)^2\left(x^2-3x-3\right)=0\right\}\)
a/ Liệt kê A;B
b/ CMR: ( A hợp B) \ ( A giao B) = ( A \ B ) hợp ( B \ A )
Cho ba vectơ a→, b→, c→ đều khác vectơ . Các khẳng định sau đúng hay sai?
a) Nếu hai vec tơ a→, b→ cùng phương với c→ thì a→ và b→ cùng phương.
b) Nếu a→, b→ cùng ngược hướng với c→ thì a→ và b→ cùng hướng.