Rút gọn:
\(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)
Rút gọn biểu thức A=\(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+2}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
ggggghgdhfdhfghsagyfgfghhg
Ta có : A = \(\left(\frac{x+2}{x.\sqrt{x}-1}+\frac{\sqrt{x}+2}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
= \(\frac{x+2+x+\sqrt{x}-2-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}.\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\)
= \(\frac{x-1}{\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)}.\frac{x+\sqrt{x}+1}{\sqrt{x}+1}=1\)
Vậy A = 1
rút gọn: \(P=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right)\times\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
\(\left(\frac{x+2}{x\sqrt{x-1}}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\) rút gọn biểu thức
A=\(\frac{1}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}:\left(\frac{1}{\sqrt{x}-1}-\frac{2}{x-1}\right)\)
rút gọn a
rút\:gọn\:\frac{2\sqrt{x}}{\sqrt{x}-2}-\frac{5\sqrt{x}-2}{x-2\sqrt{x}}-\frac{\sqrt{x}+1}{\sqrt{x}}
\(\dfrac{2\sqrt{x}}{\sqrt{x}-2}-\dfrac{5\sqrt{x}-2}{x-2\sqrt{x}}-\dfrac{\sqrt{x}+1}{\sqrt{x}}\left(x>0;x\ne4\right)\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}-2}-\dfrac{5\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}\cdot\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{5\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2x-5\sqrt{x}+2-x+\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(A=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
Rút gọn P
\(P=\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\left(\frac{1}{2\sqrt{x}}-\frac{\sqrt{x}}{2}\right)^2\)
\(P=\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\left(\frac{1}{2\sqrt{x}}-\frac{\sqrt{x}}{2}\right)^2\)
\(P=\left[-\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\left(-\frac{\sqrt{x}}{2}+\frac{1}{2\sqrt{x}}\right)^2\)
\(P=\left[-\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\left(\frac{1}{4x}+\frac{1}{4}-\frac{1}{2}\right)\)
\(P=-\frac{4\sqrt{x}.\left(\frac{1}{4x}-\frac{1}{2}+\frac{x}{4}\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(P=-\frac{4.\frac{x^2-2x+1}{4x}.\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)
\(P=-\frac{\frac{x^2-2x+1}{\sqrt{x}}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(P=-\frac{x^2-2x+1}{\sqrt{x}.\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(P=-\frac{\sqrt{x}.\left(x-1\right)}{x}\)
Rút gọn:
R = \(\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right)\cdot\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
X = \(\left(\frac{\sqrt{x}+2}{3\sqrt{x}}+\frac{2}{\sqrt{x}+1}-3\right):\frac{2-4\sqrt{x}}{\sqrt{x}+1}-\frac{3\sqrt{x}+1-x}{3\sqrt{x}}\)
Rút gọn: \(\frac{x+2}{x\sqrt{x}+1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{x-1}\)
Đề đúng đó bạn. trong đề thi tuyển sinh lớp 10 tỉnh bình định năm 2009-2010
Mình mới gửi bạn cái link đấy làm gì có câu đó
Rút gọn \(M=\left(\frac{2x+3\sqrt{x}}{2\sqrt{x}+1}+\frac{1}{x-\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right).\left(\frac{x-\sqrt{x}+1}{\sqrt{x}}\right)\)
Rút gọn: P= \(\left(\frac{1}{1-\sqrt{2}}-\frac{1}{\sqrt{x}}\right):\left(\frac{2x+\sqrt{x}-1}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\)