Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thai Nguyen
Xem chi tiết
Vũ THị Ánh Tuyết
Xem chi tiết
zZz Cool Kid_new zZz
21 tháng 9 2020 lúc 12:14

\(A=\sqrt{7-2\sqrt{10}}+\sqrt{7+2\sqrt{10}}\)

\(A^2=\left(7+2\sqrt{10}+7-2\sqrt{10}\right)+2\sqrt{\left(7-2\sqrt{10}\right)\left(7+2\sqrt{10}\right)}\)

\(=14+2\sqrt{49-40}=14+6=20\)

Khi đó:\(A=\sqrt{20}\)

Các câu còn lại bạn làm nốt nhé

Khách vãng lai đã xóa
Nguyễn Thị Ngọc Diệp
Xem chi tiết
Mai Hồng Ngọc
Xem chi tiết
Akai Haruma
11 tháng 8 2021 lúc 18:45

Câu 1,2 bạn đã đăng và có lời giải rồi

Câu 3:

\(=\frac{(\sqrt{3})^2+(2\sqrt{5})^2-2.\sqrt{3}.2\sqrt{5}}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{(\sqrt{3}-2\sqrt{5})^2}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{\sqrt{3}-2\sqrt{5}}{\sqrt{2}}\)

Thị Thanh Nguyễn
Xem chi tiết
Đỗ Phương Linh
27 tháng 7 2018 lúc 20:13

Bài này khó quá mình không biết làm .

Songoku
Xem chi tiết
LeNgocBaoKhanh
31 tháng 7 2019 lúc 10:17

\(\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)

=\(\frac{\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{2}+\sqrt{5}\right)^2}}\)

\(\frac{\sqrt{3}+3+\sqrt{2}-\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{2}+\sqrt{5}+1-\left(\sqrt{2}+\sqrt{5}\right)}\)

\(\frac{\sqrt{3}+3+\sqrt{2}-\sqrt{5}-\sqrt{2}}{\sqrt{2}+\sqrt{5}+1-\sqrt{2}-\sqrt{5}}\)

\(\sqrt{3}+\sqrt{5}+3\)

HanaYori
28 tháng 8 2019 lúc 20:53

Bạn Khanh đúng r chỉ sai chỗ\(\sqrt{5+2\sqrt{6}}=\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}\) mới đúng

Songoku
29 tháng 8 2019 lúc 21:26

thanhs you các bạn

Hải Nam Xiumin
Xem chi tiết
Lâm Vũ Thiên Phúc
1 tháng 7 2016 lúc 9:11

câu E dễ nhất nên mình làm trước , các câu còn lại làm tương tự ( biến đổi thành hằng đẳng thức rồi rút gọn ) :

\(E=\sqrt{9-2.3.\sqrt{6}+6}+\sqrt{24-2.2\sqrt{6}.3+9}\)

\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)

\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)      

\(=3-\sqrt{6}+2\sqrt{6}-3\)   ( vì \(3-\sqrt{6}>0;2\sqrt{6}-3>0\) )

\(=\sqrt{6}\)

 

Mysterious Person
18 tháng 6 2017 lúc 10:20

A = \(\dfrac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)

A = \(\dfrac{\sqrt{3}+\sqrt{\left(\sqrt{2}+3\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)

A = \(\dfrac{\sqrt{3}+\sqrt{2}+3-\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{2}+\sqrt{5}+1-\left(\sqrt{5}+\sqrt{2}\right)}\)

A = \(\dfrac{\sqrt{3}+\sqrt{2}+3-\sqrt{3}-\sqrt{2}}{\sqrt{2}+\sqrt{5}+1-\sqrt{5}-\sqrt{2}}\) = \(\dfrac{3}{1}\) = \(3\)

C = \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

C = \(\left(4+\sqrt{15}\right).\left(\sqrt{40-10\sqrt{15}}-\sqrt{24-6\sqrt{15}}\right)\)

C = \(\left(4+\sqrt{15}\right)\left(\sqrt{\left(5-\sqrt{15}\right)^2}-\sqrt{\left(\sqrt{15}-3\right)^2}\right)\)

C = \(\left(4+\sqrt{15}\right)\left(5-\sqrt{15}-\left(\sqrt{15}-3\right)\right)\)

C = \(\left(4+\sqrt{15}\right)\left(5-\sqrt{15}-\sqrt{15}+3\right)\)

C = \(\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

C = \(32-8\sqrt{15}+8\sqrt{15}-30=2\)

D = \(\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)

D = \(\left(\sqrt{30-10\sqrt{5}}-\sqrt{6-2\sqrt{5}}\right)\left(3+\sqrt{5}\right)\)

D = \(\left(\sqrt{\left(5-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}\right)\left(3+\sqrt{5}\right)\)

D = \(\left(5-\sqrt{5}-\left(\sqrt{5}-1\right)\right)\left(3+\sqrt{5}\right)\)

D = \(\left(5-\sqrt{5}-\sqrt{5}+1\right)\left(3+\sqrt{5}\right)\)

D = \(\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)\)

D = \(18+6\sqrt{5}-6\sqrt{5}-10=8\)

E = \(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{5}}\)

E = \(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3\sqrt{3}-2\sqrt{2}\right)^2}\)

E = \(3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)

nchdtt
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 7 2021 lúc 19:13

\(A=\dfrac{\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{2}.\sqrt{6-2\sqrt{5}}+\sqrt{\left(\sqrt{10}-\sqrt{5}\right)^2}}{2\left(\sqrt{2}+1\right)}\)

\(=\dfrac{\sqrt{5}+1-\sqrt{2}\left(\sqrt{5}-1\right)+\sqrt{10}-\sqrt{5}}{2\left(\sqrt{2}+1\right)}\)

\(=\dfrac{\sqrt{5}+1-\sqrt{10}+\sqrt{2}+\sqrt{10}-\sqrt{5}}{2\left(\sqrt{2}+1\right)}\)

\(=\dfrac{\sqrt{2}+1}{2\left(\sqrt{2}+1\right)}=\dfrac{1}{2}\)

hoangkunvai
Xem chi tiết
Thanh Tùng DZ
7 tháng 6 2019 lúc 16:28

với n >0, ta có :

\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=n+1-n=1\Rightarrow\frac{1}{\sqrt{n+1}-\sqrt{n}}=\sqrt{n+1}+\sqrt{n}\)

Gọi biểu thức đã cho là A

\(A=\frac{1}{-\left(\sqrt{2}-\sqrt{1}\right)}-\frac{1}{-\left(\sqrt{3}-\sqrt{2}\right)}+...+\frac{1}{-\left(\sqrt{8}-\sqrt{7}\right)}-\frac{1}{-\left(\sqrt{9}-\sqrt{8}\right)}\)

\(A=-\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}-...-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{9}-\sqrt{8}}\)

\(A=-\left(\sqrt{2}+\sqrt{1}\right)+\left(\sqrt{3}+\sqrt{2}\right)-...-\left(\sqrt{8}+\sqrt{7}\right)+\left(\sqrt{9}+\sqrt{8}\right)\)

\(A=-\sqrt{1}+\sqrt{9}=2\)

shitbo
7 tháng 6 2019 lúc 16:39

\(\frac{1}{\sqrt{n}-\sqrt{n+1}}=\frac{\sqrt{n}+\sqrt{n+1}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=-\sqrt{n}-\sqrt{n+1}\)