Cho tứ giác ABCD. Các tia phân giác \(\widehat{A},\widehat{B},\widehat{C},\widehat{D}\)cắt nhau tạo thành một tứ giá. Chứng minh tứ giác đó có tổng hai góc đối bằng 1800.
Cho tứ giác ABCD. Các tia phân giác góc A,B,C,D cắt nhau tạo thành một tứ giác. Chứng minh tứ giác đo có tổng hai góc đối nhau bằng 180 độ
Cho tứ giác ABCD, các tia phân giác của A và B cắt nhau tại I. Chứng minh \(\widehat{AIB}=\frac{1}{2}\left(\widehat{C}+\widehat{D}\right)\)
1, Cho tứ giác ABCD có \(\widehat{B}\)+ \(\widehat{D}\) =180 độ ,AC là tia phân giác của góc A.Chứng minh CB=CD.
2, Cho tứ giác ABCD có \(\widehat{A}\) = a , \(\widehat{C}\) = b .Hai đường thẳng AD và BC cắt nhau tại E, hai đường thẳng AB và DC cắt nhau tại F.Các tia phân giác của hai góc AEB và AFD cắt nhau tại I.Tính góc \(\widehat{EIF}\) theo a,b
Cho tứ giác ABCD , phân giác góc C và D cắt nhau tại O . Chứng minh rằng :
\(\widehat{COD}=\frac{\widehat{A}+\widehat{B}}{2}\)
ta có A+B=360-(D+C)
<=> A+B=360-2(180-ODC-OCD)=360-360+2.COD=2COD
\(\Rightarrow\widehat{COD}=\frac{\widehat{A}+\widehat{B}}{2}\)
Xét \(\Delta COD\)có :
\(\widehat{COD}=180^o-\left(\widehat{C_1}+\widehat{D_1}\right)\)
\(=180^o-\frac{\widehat{C}+\widehat{D}}{2}\)
xÉT tứ giác ABCD có :
\(\widehat{C}+\widehat{D}=360^o-\left(\widehat{A}+\widehat{B}\right)\)
Do đó : \(\widehat{COD}=180^o-\frac{360^o-\left(\widehat{A}+\widehat{B}\right)}{2}\)
\(\Rightarrow\widehat{COD}=\frac{\widehat{A}+\widehat{B}}{2}\)(đpcm)
Cho tứ giác ABCD có\(\widehat{A}=100^0,\widehat{D}=80^0.\) Tia phân giác của góc C và D cắt nhau ở E. Các đường phân giác của góc ngoài tại đỉnh C và D cắt nhau tại F. Tính các góc \(\widehat{CED},\widehat{CFD}\)
Tứ giác ABCD có\(\widehat{A}=110^0,\widehat{B}=100^0\) . Các tia phân giác của các góc C và D cắt nhau ở E. Các đường phân giác của các góc ngoài tại các đỉnh C và D cắt nhau ở F. Tính \(\widehat{CED,}\widehat{CFD}\)
Cho tứ giác ABCD có phân giác trong của góc A và góc B cắt nhau tại E . Phân giác ngoài của góc A và B cắt nhau tại F . Chứng minh
góc AEB =\(\frac{C\widehat{ }+D\widehat{ }}{2}\) và góc AFB = \(\frac{A\widehat{ }+\widehat{B}}{2}\)
Cho tứ giác ABCD \(AB=BC=AD\) , và\(\widehat{DAB}\) + \(\widehat{BCD}\) = \(^{^{ }180^o}\)
a) Chứng minh rằng DB là tia phân giác của góc \(\widehat{ADC}\) ?
b) Chứng minh rằng tứ giác ABCD là hình thang cân ?
a. Ta có: AD = AB
=> \(\Delta ABD\) là tam giác cân
=> Góc ADB = góc ABD (1)
Mà góc ABD = góc BDC (so le trong) (2)
Từ (1) và (2), suy ra:
BD là tia phân giác của góc ADC
b. Nối AC
Xét 2 tam giác ABC và ABD có:
AD = BC (gt)
AB chung
=> \(\Delta ABD\sim\Delta ABC\) (1)
Ta có: AD = AB = BC (2)
Từ (1) và (2), suy ra: \(\Delta ABD=\Delta ABC\)
=> Góc A = góc B
Ta có: AB//CD
=> Góc D + góc A = 90o (2 góc trong cùng phía)
Mà góc A = góc B
=> Góc C = góc D
=> ABCD là hình thang cân
Nhưng bậy giờ bn chỉ cần chứng minh đó là hình thang là đc
Cho tứ giác ABCD . Các tia phân giác của các góc A,B,C,D cắt nhau tạo thành một tứ giác. Khi đó tổng hai góc đối của tứ giác đó bằng ?
2 góc đối của tứ giác đó có tổng bằng 180 độ
Em tham khảo tại link dưới đây nhé:
Câu hỏi của Hoàng Tử Bóng Đêm Kiyoshi - Toán lớp 8 - Học toán với OnlineMath