Cho \(x,y,z>2\) thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\). Chứng minh rằng :
\(\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\)
Cho x,y,z>0 thỏa mãn \(x+y+z\le1\). Chứng minh rằng :
\(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)
Áp dụng BĐT BSC và BĐT Cosi:
\(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\ge17\left(x+y+z\right)+\frac{2.\left(1+1+1\right)^2}{x+y+z}\)
\(=17\left(x+y+z\right)=\frac{18}{x+y+z}\)
\(=17\left(x+y+z\right)=\frac{17}{x+y+z}+\frac{1}{x+y+z}\)
\(\ge2\sqrt{17\left(x+y+z\right).\frac{17}{x+y+z}}+\frac{1}{1}\)
\(=35\)
\(\Rightarrow17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)
Áp dụng bất đẳng thức AM-GM kết hợp giả thiết x + y + z ≤ 1 ta có :
\(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=17x+17y+17z+\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\)
\(=\left(18x+\frac{2}{x}\right)+\left(18y+\frac{2}{y}\right)+\left(18z+\frac{2}{z}\right)-\left(x+y+z\right)\)
\(\ge2\sqrt{18x\cdot\frac{2}{x}}+2\sqrt{18y\cdot\frac{2}{y}}+2\sqrt{18z\cdot\frac{2}{z}}-1=12\cdot3-1=35\)( đpcm )
Dấu "=" xảy ra <=> x=y=z=1/3
Cho 3 số dương x,y,z thỏa mãn: xy+yz+zx=1. Chứng minh rằng:
\(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+z^2\right)\left(1+y^2\right)}{1+z^2}}=2\)
Ta có:
\(1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\)
\(1+y^2=xy+yz+xz+y^2=\left(y+z\right)\left(x+y\right)\)
\(1+z^2=xy+yz+xz+z^2=\left(x+z\right)\left(y+z\right)\)
Thay vào A được:
\(P=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\frac{\left(x+z\right)\left(y+z\right)\left(x+y\right)\left(x+z\right)}{\left(y+z\right)\left(x+y\right)}}\)\(+z\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(x+y\right)}{\left(x+z\right)\left(y+z\right)}}\)
\(=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)
\(=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)
\(=xy+xz+xy+yz+xz+zy\)
\(=2\left(xy+yz+xz\right)\)
\(=2\)(do xy+yz+xz=1)
=>Đpcm
Dạng toán này rất nhiều bạn hỏi rồi: thay \(xy+yz+zx=1\) vào các căn thức rồi phân tích đa thức thành nhân tử.
CHo x,y,z>2 thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) CMR: \(\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\)
Cho các số thực x, y, z thõa mãn xyz = 1. Chứng minh rằng:
\(\frac{1}{\left(2+x\right)\left(2+\frac{1}{y}\right)}+\frac{1}{\left(2+y\right)\left(2+\frac{1}{z}\right)}+\frac{1}{\left(2+z\right)\left(2+\frac{1}{x}\right)}\le\frac{1}{3}\)
\(\Sigma\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\Sigma\left(\dfrac{1}{9}.\dfrac{a^2\left(2+1\right)^2}{2a.\left(\Sigma a\right)+2a^2+bc}\right)\le\Sigma\left(\dfrac{1}{9}.\dfrac{4a^2}{2a\left(\Sigma a\right)}+\dfrac{1}{9}.\dfrac{a^2}{2a^2+bc}\right)\)
\(=\Sigma\left(\dfrac{1}{9}.\left(\dfrac{2a}{\Sigma a}+\dfrac{a^2}{2a^2+bc}\right)\right)=\dfrac{1}{9}\left(2+\Sigma\dfrac{a^2}{2a^2+bc}\right)\)
Cần chứng minh \(\Sigma\frac{a^2}{2a^2+bc}\le1\)
<=> \(\Sigma\frac{bc}{2a^2+bc}\ge1\) (*)
Đặt (x;y;z) -------> \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\)
Suy ra (*) <=> \(\Sigma\frac{x^2}{x^2+2xy}\ge1\Leftrightarrow\frac{\Sigma x^2}{\Sigma x^2}\ge1\) (đúng)
Vậy \(\Sigma\frac{a^2}{2a^2+bc}\le1\)
Suy ra \(\Sigma\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}\le\frac{1}{9}\left(2+\Sigma\frac{a^2}{2a^2+bc}\right)\le\frac{1}{9}\left(2+1\right)=\frac{1}{3}\)
Đẳng thức xảy ra <=> x = y = z = 1
Giả sử x,y,z là 3 số thực dương thỏa mãn điều kiện x+y+z=xyz. Chứng minh rằng:
\(\frac{x}{1+x^2}+\frac{2y}{1+y^2}+\frac{3z}{1+z^2}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Cho các số dương x, y, z thỏa mãn: \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=3\)
Chứng minh rằng: \(\frac{1}{\left(2x+y+z\right)^2}+\frac{1}{\left(2y+z+x\right)^2}+\frac{1}{\left(2z+x+y\right)^2}\ge\frac{3}{16}\)
Cho x,y,z thỏa mãn x+y+z=\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\). Chứng minh rằng
\(\frac{1}{\left(2xy+yz+zx\right)^2}+\frac{1}{\left(2yz+zx+xy\right)^2}+\frac{1}{\left(2xz+xy+yz\right)^2}\le\frac{3}{16x^2y^2z^2}\)
Cho 3 số thực dương x, y, z thỏa mãn : \(x+y\le z\)
Chứng minh rằng : \(\left(x^2+y^2+z^2\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\ge\frac{27}{2}\)
Theo AM - GM và Bunhiacopski ta có được
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\ge\frac{8}{\left(x+y\right)^2}\)
Khi đó \(LHS\ge\left[\frac{\left(x+y\right)^2}{2}+z^2\right]\left[\frac{8}{\left(x+y\right)^2}+\frac{1}{z^2}\right]\)
\(\)\(=\left[\frac{1}{2}+\left(\frac{z}{x+y}\right)^2\right]\left[8+\left(\frac{x+y}{z}\right)^2\right]\)
Đặt \(t=\frac{z}{x+y}\ge1\)
Khi đó:\(LHS\ge\left(\frac{1}{2}+t^2\right)\left(8+\frac{1}{t^2}\right)=8t^2+\frac{1}{2t^2}+5\)
\(=\left(\frac{1}{2t^2}+\frac{t^2}{2}\right)+\frac{15t^2}{2}+5\ge\frac{27}{2}\)
Vậy ta có đpcm
Ta có:
\(VT-VP=\frac{\left(x^2+y^2\right)\left(\Sigma xy\right)\left(\Sigma x\right)\left[z\left(x+y\right)-xy\right]\left(z-x-y\right)}{x^2y^2z^2\left(x+y\right)^2}+\frac{\left(x-y\right)^2\left(2x+y\right)^2\left(x+2y\right)^2}{2x^2y^2\left(x+y\right)^2}\ge0\)
Vì \(z\left(x+y\right)-xy\ge\left(x+y\right)^2-xy\ge4xy-xy>0\)
Cho x,y,z>2 thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) CMR : \(\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\)
Đặt a=x-2; b=y-2; c=z-2. Phải chứng minh abc =<1
Thật vậy, từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)ta có:
\(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=1\)
Theo BĐT Cauchy ta có:
\(\frac{1}{a+2}=\left(\frac{1}{2}-\frac{1}{b+2}\right)+\left(\frac{1}{2}-\frac{1}{c+2}\right)=\frac{1}{2}\left(\frac{b}{b+2}+\frac{c}{c+2}\right)\ge\sqrt{\frac{bc}{\left(b+2\right)\left(c+2\right)}}\left(1\right)\)
tương tự \(\hept{\begin{cases}\frac{1}{b+2}\ge\sqrt{\frac{ac}{\left(a+2\right)\left(c+2\right)}}\left(2\right)\\\frac{1}{c+2}\ge\sqrt{\frac{ab}{\left(a+2\right)\left(b+2\right)}}\left(3\right)\end{cases}}\)
Nhân các vế của (1)(2)(3) ta được đpcm
Dấu "=" xảy ra <=> a=b=c hay x=y=z=3