Tìm x, y biết: (x+3)2 + (2x - y)2 ≤ 0
a) A=x(x^3+y)-x^2(x^2-y)-x^2(y-1) tại x=-10 và y=5
b) Tìm x biết 5x^3-3x^2+10x-6=0
c) Tìm x biết x^2+y^2-2x+4y+5=0
Tìm x,y biết:
1) 3^X-1 = 1/243
2) 81^-2X x 27^X=9^5
3) ( x-y+3)^2 + (y-1)^2=0
Tìm các số nguyên x,y biết
a, (x+1).(3-x)=2.|y|+1
b,(x-2).(5-x)-|y-1|-2=0
c, 2x+y=3 và |2x+3|+|y+2|=8
Bài 1 làm tính chia :
a,[5.(x-y)^4-3.(x-y)^3+4.(x-y)^2]:(y-x)^2
b,[(x+y)^5-2.(x+y)^4+3.(x+y)^3]:(3x-1)=0
Bài 2 tìm x biết :
(x^2-1/2x):2x-(3x-1)^2.(3x-1)=0
Bài 1:a)Tìm x biết |3x-12|+4x=2x-2 b)tìm x,y biết |6+x|+(3+y)2=0
Bài 2:Tìm x để g(x)=0 biết rằng g(x)=3x2-3-8g(x)
b
\(\left|6+x\right|\ge0;\left(3+y\right)^2\ge0\Rightarrow\left|6+x\right|+\left(3+y\right)^2\ge0\)
Suy ra \(\left|6+x\right|+\left(3+y\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}6+x=0\\3+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-6\\y=-3\end{cases}}\)
a
Ta có:\(\left|3x-12\right|=3x-12\Leftrightarrow3x-12\ge0\Leftrightarrow3x\ge12\Leftrightarrow x\ge4\)
\(\left|3x-12\right|=12-3x\Leftrightarrow3x-12< 0\Leftrightarrow3x< 12\Leftrightarrow x< 4\)
Với \(x\ge4\) ta có:
\(3x-12+4x=2x-2\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=2\left(KTMĐK\right)\)
Với \(x< 4\) ta có:
\(12-3x+4x=2x-2\)
\(\Rightarrow10=x\left(KTMĐK\right)\)
Tìm x,y,z biết
1) (x-1)^2 + (2x-y-3)^2 + (y+z)^2 = 0
2) ( 2x+3)^1998 + (3x-5)^2000 nhỏ hơn hoặc bằng 0
Bài 2: Tìm x , y biết
a) ( 2x + 3 )^2 - ( x - 2 )^2 = 0
b)3x.( x - 1) - (1 - x) = 0
c) x^5 - x^3 - x^2 + 1 = 0
d) 2x^3 + 2x + x^2 + 1 = 0
e) x^3 + x^2 - 4x = 4
f) (y + 1).( 2 - y ) + ( y - 2 )^2 + y^2 - 4 = 0
# Mong mọi người giải hết giúp mình nha #
Tìm x,y∈Z,biết:
Tìm x,y∈Z,biết:
18*) (x-6)(3x-9)>0
19*) -2x(x+5)<0
20*) (2x-1)(6-x) >0
21*) (2-x)(x+7) <0
22*) |x+3|≤2
23*) (x + 3)(x2 + 2) > 0
24*) (x - 2)(-9 - x2 ) < 0
25*) |x + 25| + |5 - y|=0
26*) |x - 40 | + |x - y + 10 | lớn hơn hoặc bằng 0
27*) (x – 3)(3y + 2) = 7
28*) 5xy – 5x + y = 5
\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!
20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
21.
\((2-x)(x+7)< 0\)
TH1.
\(\orbr{\begin{cases}2-x>0\\x+7< 0\end{cases}\Rightarrow\orbr{\begin{cases}x< 2\\x>-7\end{cases}}\Rightarrow-7< x< 2}\)
TH2.
\(\orbr{\begin{cases}2-x< 0\\x+7>0\end{cases}\Rightarrow\orbr{\begin{cases}x>2\\x< -7\end{cases}}\Rightarrow2< x< -7}\)(vô lí)
Vậy \(-7< x< 2\) thì \((2-x)(x+7)< 0\)
Tìm các cặp x,y biết:
a)|x-1|+|y+1|=0
b)|2x-3|+|3-5y|=0
c)2|x+3|+1/3|2-y|=0
Ta có : |x - 1| + |y + 1| = 0
Mà : |x - 1| \(\ge0\forall x\in R\)
|y + 1| \(\ge0\forall x\in R\)
Nên : |x - 1| = |y + 1| = 0
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\y+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\y=-1\end{cases}}\)
a) Tìm x biết:(x-1)(x-2)(x-3)(x-6) + x2=169
b) Tìm x;y nguyên biết: x2 - 2y2 + xy - 3x + 3y -1 = 0
c) Tìm x;y biết: x3+ y3 - 3xy +1 = 0 và 2x + 3y = 2018