Cho tam giác ABC và đường cao AH ( AH thuộc BC ) Biết rằng BAH=BCA
a) Cm rằng tam giác ABC là tam giác vuông
b)Biết rằng sô đo góc ABC bằng trung bình cộng của hai góc BAC , ACB
LÀM HỘ ZỚI
a: Ta có: \(\widehat{BAH}+\widehat{B}=90^0\)
mà \(\widehat{BAH}=\widehat{C}\)
nên \(\widehat{B}+\widehat{C}=90^0\)
hay ΔABC vuông tại A
Cho tam giác ABCvà đường cao AH, H thuộc BC . Biết rằng góc BAH=góc BCA.
a) Chứng minh rằng tam giác ABC là tam giác vuông.
b) Biết rằng số đo góĉ ABC bằng trung bình cộng của hai góc ̂BACvà góc ACB. Tính số đo các góc của tam giácABC.
Cho tam giác ABC , đường cao AH . M là trung điểm của BC và góc BAH = góc HAM = góc MAC . Chứng minh rằng :
a) tam giác ABC vuông
b) tam giác đều .
Cho tam giác ABC có AB<AC góc A= 60độ, AH là tia phân giác của góc BAC
a, tính số đo góc BAH
b, lấy điểm K thuộc cạnh AC sao cho AK= AB. CM: tam giác AHB= tam giác AHK
c,CM: AH vuông góc với BK
d, Qua H vẽ đường thẳng vuông góc với AH cắt AC tại N và tia AB tại Q
CM rằng: AH là đường trung trực của QN
a/ Vì AH là tia p/g của \(\widehat{BAC}\) (gt)
=> \(\widehat{BAH}=\widehat{CAH}=\frac{60^o}{2}=30^o\)
Vậy \(\widehat{BAH}=30^o\)
b/ Xét ΔAHB và ΔAHK có:
AH: Cạnh chung
\(\widehat{BAH}=\widehat{CAH}\) (AH là tia p/g của \(\widehat{BAC}\) (gt))
AB = AK (gt)
=> ΔAHB = ΔAHK(c.g.c)(đpcm)
c/ Vì ΔAHB = ΔAHK (ý b)
=> \(\widehat{AHB}=\widehat{AHK}\) (2 góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHK}=180^o\) (kề bù)
=> \(\widehat{AHB}=\widehat{AHK}=\frac{180^o}{2}=90^o\)
=> AH \(\perp\) BK (đpcm)
d/ Xét ΔAHN và ΔAHQ có:
\(\widehat{AHN}=\widehat{AHQ}=90^o\left(gt\right)\)
AH: Cạnh chung
\(\widehat{BAH}=\widehat{CAH}\) (AH là p/g của \(\widehat{BAC}\) (gt))
=> ΔAHN = ΔAHQ(g.c.g)
=> HN = HQ(2 cạnh tương ứng) (1)
mà \(\widehat{AHN}=\widehat{AHQ}=90^o\left(gt\right)\Rightarrow AH\perp QN\) (2)
Từ (1) và (2)
=> AH là đường trung trực của QN (đpcm)
Cho tam giác ABC có AB=AC , AH là tia phân giác của góc BAC (H e BC)
CM rằng :
a, Tam giác AHB=tam giác AHC ; HB=HC
b, AH vuông góc vs BC
c,Gọi K là trung điểm của AC . Chứng minh rằng : Giao điểm G của AH và BK là trọng tâm của tam giác ABC
d, Giả sử AH=9cm . Tính AG (giúp vs)
a: Xét ΔABH và ΔACH co
AB=AC
góc BAH=góc CAH
AH chung
=>ΔAHB=ΔAHC
b: ΔACB cân tại A
mà AH là phân giác
nên AH vuông góc BC
c: Xét ΔACB có
AH,BK là trung tuyến
AH cắt BK tại G
=>G là trọng tâm
d: AG=2/3AH=6cm
Bài 1: Cho tam giác ABC cân tại A biết rằng trên cạnh BC có điểm D sao cho BD=AB tính số đo góc A
Bài 2: Cho tam giác ABC có 2 đường cao BD, CE cắt nhau tại H. Biết AB=CH, tính số đo góc ACB
Bài 3: Cho tam giác ABC có AH, AM lần lượt là đường cao, đường trung tuyến của tam giác. Biết góc BAH=góc HAM=góc MAC=góc \(\frac{\widehat{BAC}}{3}\)
Bài 4: Cho tam giác ABC cân tại A có góc A=100o . Trên tia AB lấy điểm D sao cho AD=BC. Tính góc ACD
Bài 5: Cho tam giác ABC có góc B=60o , góc C=75o . Trên tia đối tia BC lấy điểm M sao cho BC=2BM. Tính số đo các góc M
Ai giúp mình với !!!
a) Cho tam giác ABC, kẻ AH vuông góc với BC, nối A với trung điểm M của BC. Biết góc BAH = góc HAM = góc MAC và AB<AC. Tính số đo các góc của tam giác ABC.
b) Chứng minh rằng tam giác ABC vuông tại A. M là trung điểm của BC. Chứng minh AM = MB = MC.
Cho tam giác ABC vuông tạiA . Đường cao AH(H thuộc BC). Trên đường thẳng vuông góc với BC tại B lấy điểm D(D không nằm cùng nửa mặt phẳng với A, bờ BC) sao cho BD=AH
a.So sánh hai tam giác AHB và DBH
b.Chứng minh rằng AB song song với DH
c. Biết số đo góc BAH là 35 độ . Tính góc ACB
Câu hỏi của Lê Thu Phương Anh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.