Bài 1: Tính các góc của hình thang cân biết 1 góc bằng 50 độ?
Bài 2: Cho tam giác ABC cân tại A. Lấy điểm D thuộc AB, E thuộc AC sao cho AD = AE.
a) Tứ giác BDEC là hình gì? Vì sao?
b) Các điểm D và E ở vị trị nào thì BD = DE = EC?
bài 9; cho tam giác ABC cân tại A. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD = AE.
A, CM; Tứ giác BDEC là thang cân.
B, Cho góc A =70 độ. Tính các góc hình thang cân BDEC.
a, Vì AD = AE nên \(\Rightarrow\Delta ADE\)là tam giác cân tại A
\(\Rightarrow gócADE\)\(=\frac{180^o-A}{2}\)
Vì \(\Delta ABC\)cân tại A nên
Góc CBA = \(\frac{180^o-A}{2}\)
\(\Rightarrow ADE=CBA\)( mà 2 góc này nằm trong vị trí so le trong )
\(\Rightarrow\)\(DE//BC\)
Mà \(ABC=ACB\)(Vì tam giác ABC cân tại A )
\(\Rightarrow\)Tứ giác BDEC là hình thang cân
b,
Ta có :
^A \(=70^o\)\(\Rightarrow\)^B=^C =\(55^O\)
\(\Rightarrow BDE=CED=\frac{\left(360-2\cdot55\right)}{2}=125^O\)
Cho tam giác ABC cân tại A lấy điểm D trên cạnh AB lấy điểm A trên cạnh AC sao cho AD=AE
a)BDEC là hình thang cân,tính các góc trong hình thang cân đó
b)Tính các góc trong của hình thang cân đó biết gốc A=50 độ
Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang
Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:
a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông
Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB
Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF
Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:
a) AE vuông góc với DB
b) AD // BE và AD = BE
c) E là trung điểm của DC
d) Xác định dạng của tứ giác BCEO
e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
Cho tam giác ABC cân tại A.Trên các cạnh bên AB,AC lấy theo thứ tự các điểm D và E sao cho AD=AE.
a)Chứng minh rằng BDEC là hình thang cân.
b) Tính các góc của hình thang cân đó,biết rằng góc A =50 độ
a) Ta xét: Tam giác ADE có: AD = AE
=> Tam giác ADE cân tại A
\(\Rightarrow\widehat{AED}=\widehat{ACB}\)
=> DE//BC
Ta xét: Tứ giác DECB có: DE//BC
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
=> BDEC là hình thang cân
b) \(\widehat{ABC}=\frac{1}{2}\left(180^o-50^o\right)=65^o\)
\(\widehat{ACB}=\widehat{ABC}=65^o\)
\(\widehat{DEC}=180^o-65^o=115^o\)
\(\widehat{EDB}=\widehat{EDC}=115^o\)
BÀI 9: Cho tam giác ABC cân tại A, lấy điểm D trên cạnh AB, lấy điểm D trên cạnh AB, điểm E trên cạnh trên cạnh AC sao cho AD = AE.
A, CM; Tứ giác BDEC là hình thang cân.
B, Cho góc A = 70 độ. Tính các góc hình thang cân BDEC.
Bài 1: Cho tam giác ABC.Trên AC lấy 1 điểm B' sao cho AB'=AB, trên AC lấy điểm C' sao cho AC'=AC. CMR tứ giác BB'CC' là hình thang.
Bài 2:CMR: nếu 1 tứ giác có phân giác trong của hai góc kề với một cạnh vuông góc với nhau thì tứ giác đó là hình thang.
Bài 3: Cho hình thang ABCD(AB//CD). Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc cạnh đáy CD:. CM AD+BC=CD.
Bài 4: a)Tính số đo của các góc trong tứ giác ABCD, biết góc A:góc B:góc C:góc D=2:2:1:1.
b)Tứ giác ABCD là hình gì?Vì sao?
Bài 5:Cho tam giác ABC cân tại A. Kẻ các phân giác BD,CE của các góc B và C.
a)Cm: Tam giác ADB= tam giác AEC.
b)Cm: Tứ giác BEDC là hình thang cân có cạnh bên bằng 1/2 đáy.
Bài 6:Cho tam giác ABC vuông tại A có góc ABC=60 độ. Kẻ tia Ax song song với BC.Trên tia Ax lấy điểm D sao cho AD=BC.
a) Tính số đo các góc BAD và BAC.
b)Cm tứ giác ABCD là hình thang cân.
Mình đang cần gấp nên mong các bạn giải giùm mình. ^-^
Bài 1:
a.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = 1800 - D = 1800 - 540 = 1260
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 - C = 1800 - 1050 = 750
b.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = (1800 - 320) : 2 = 740
=> D = 1800 - 740 = 1060
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 : (1 + 2) . 2 = 1200
=> C = 1800 - 1200 = 600
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
Các bạn giúp mình giải mấy bài này với !!!! Mình cảm ơn trước nhé!!
Bài 1: Hình thang cân ABCD có AB song song CD, AB<CD. Kẻ các đường cao AH, BK. Chứng minh rằng DH=CK.
Bài 2:Hình thang cân ABCD có AB song song CD, O là giao điểm uaqr 2 đường chéo. Chứng minh rằng OA=OB, OC=OD
Bài 3: Cho tam giác ABC cân tại A, các đường phân giác BE, CF. Chứng minh rằng BFEC là hình thang cân có đáy nhỏ bằng cạnh bên
Bài 4: Cho tam giac ABC cân tại A. Lấy điểm D trên cạnh AB, điểm Etrên cạnh AC sao cho AD=AE
a) Tứ giác BDEC là hình gì? Vì sao?
b)Các điêm D,E ở vị trí nào thù BD=DE=EC?
Bài 5: Tính các goác của hình thang cân, biết 1 góc bằng 50 độ
Cho tam giác ABC cân tại A. Trên cạnh AB và AC lần lượt lấy các điểm D và E sao cho AD= AE
1.Cm tứ giác BDEC Là hình thang cân
2.tính các góc của hình thang cân
Cho tam giác ABC cân tại A. Gọi D, E theo thứ tự thuộc các cạnh bên AB, AC sao cho AD = AE.
a) Tứ giác BDEC là hình gì? Vì sao?
b) Tính các góc của hình thang BEDC, biết A = 70o.
c) Các điểm D, E ở vị trí nào thì BD = DE = EC?
vẽ hình giùm mình
Cho ▲ABC cân tại A trên cạnh AB, AC lần lượt lấy 2 điểm D, E sao cho AD=AE.
a/ Chứng minh tứ giác BDEC là hình thang cân
b/ Cho góc A = 60 độ, tính các góc của hình thang cân BDEC
a) Xét ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(AB=AC;AD=AE\right)\)
D\(\in\)AB(gt)
E\(\in\)AC(gt)
Do đó: DE//BC(Định lí Ta lét đảo)
Xét tứ giác BDEC có DE//BC(cmt)
nên BDEC là hình thang(Định nghĩa hình thang)
Hình thang BDEC(DE//BC) có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
nên BDEC là hình thang cân(Dấu hiệu nhận biết hình thang cân)