Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
yoyo2003ht
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
28 tháng 3 2021 lúc 10:26

xí câu 1:))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)

Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )

Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=2 => x=y=2

Khách vãng lai đã xóa
no name
Xem chi tiết
Toàn Quyền Nguyễn
12 tháng 1 2017 lúc 12:33

tham khảo bài này xem có ra không

(ac+bd)2+(ad-bc)2=a2c2+2abcd+b2d2+a2d2-2abcd+b2c2

=a2c2+b2d2+a2d2+b2c2

=(a2c2+b2c2)+(b2d2+a2d2)

=c2.(a2+b2)+d2.(a2+b2)

=(a2+b2)(c2+d2)= VT ( điều phải chứng minh)

Con Heo
Xem chi tiết
Quach Bich
Xem chi tiết
Quach Bich
Xem chi tiết
tibarca41
Xem chi tiết
Đinh Đức Hùng
18 tháng 7 2017 lúc 12:18

\(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)

\(\Leftrightarrow a^2+b^2+c^2+\frac{3}{4}+a+b+c\ge0\)

\(\Leftrightarrow\left(a^2+a+\frac{1}{4}\right)+\left(b^2+b+\frac{1}{4}\right)+\left(c^2+c+\frac{1}{4}\right)\ge0\)

\(\Leftrightarrow\left(a+\frac{1}{2}\right)^2+\left(b+\frac{1}{2}\right)^2+\left(c+\frac{1}{2}\right)^2\ge0\) (luôn đúng)

Vậy \(a^2+b^2+c^2+\frac{3}{4}\ge-a-b-c\)

b ) chuyển vế tương tự

TN
Xem chi tiết
Hoàng Lê Bảo Ngọc
5 tháng 12 2016 lúc 17:55

Mình sẽ chứng minh bằng biến đổi tương đương nhé :)

\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

\(\Leftrightarrow\left(\frac{a^2}{4}-ab+b^2\right)+\left(\frac{a^2}{4}-ac+c^2\right)+\left(\frac{a^2}{4}-ad+d^2\right)+\left(\frac{a^2}{4}-ae+e^2\right)\ge0\)

\(\Leftrightarrow\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)(luôn đúng)

Vì BĐT cuối luôn đúng nên BĐT ban đầu được chứng minh.

•๛♡长เℓℓëɾ•✰ツ
Xem chi tiết
I - Vy Nguyễn
3 tháng 4 2020 lúc 21:53

Ta có : \(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)

\(\Leftrightarrow a^2.c^2+a^2.d^2+b^2.c^2+b^2.d^2\ge\left(ac\right)^2+2acbd+\left(bd\right)^2\) 

\(\Leftrightarrow\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\ge\left(ac\right)^2+2acbd+\left(bd\right)^2\)

\(\Leftrightarrow\left(ad\right)^2+\left(bc\right)^2\ge2acbd\)

\(\Leftrightarrow\left(ad\right)^2-2acbd+\left(bc\right)^2\ge0\)

\(\Leftrightarrow\left(ac-bd\right)^2\ge0\)

\(\Rightarrow\)luôn đúng 

Dấu " = " xảy ra khi \(\frac{a}{c}=\frac{b}{d}\) 

Khách vãng lai đã xóa
nguyển phương linh
Xem chi tiết
Nguyễn Thị Ngọc Linh
13 tháng 6 2019 lúc 19:19

a)  a2+b2-2ab=(a-b)2>=0

b) \(\frac{a^2+b^2}{2}\)\(\ge\)ab <=>  \(\frac{a^2+b^2}{2}\)-ab\(\ge\)0 <=> \(\frac{\left(a-b\right)^2}{2}\)\(\ge\)0 (ĐPCM)

c) a2+2a < (a+1)2=a2+2a+1 (ĐPCM)