Cho a+b=1.Tính giá trị M=2a^3+2b^3-3(a^2+b^2)
Hộ mik nha!Thanks!
Mua 1 được 3: Tặng th
bài 1: Cho : x+y= 3 . tính giá trị biểu thức:
A= x^2+2xy+y^2= 4x-4y+1
bài 2:cho a^2+b^2+c^2= m. tính giá trị biểu thức :
B= (2a+2b-c)^2+(2b+2c-a)^2+(2c+2a-b)^2
cho a,b,c không âm thỏa mãn:
\(\sqrt{a}+b+\sqrt{c}=\sqrt{3}\) và\(\sqrt{\left(a+2b\right)\left(a+2c\right)}+\sqrt{\left(b+2a\right)\left(b+2c\right)}+\sqrt{\left(c+2a\right)+\left(c+2b\right)}=3\)
Tính giá trị của biểu thức \(M=\left(2\sqrt{a}+3\sqrt{b}-4\sqrt{c}\right)^2\)
giúp mk vs thanks trước nha
có cả mấy bất đẳng thức đó hả
bn viết công thức tổng quát ra cho mk vs
mk thanks
Cho x+y = 3. Tính giá trị biểu thwucs A= x^2+2xy+y^2-4x-4y+1
Cho a2+b2+c2 =m Tính giá trị của biểu thức sau A=( 2a+2b-c)^2 + (2b+2c-a)^2 +(2c+2a-b)^2
a) Ta có : \(A=x^2+2xy+y^2-4x-4y+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
Đến đây tự làm nha , mik chỉ hưỡng dẫn hướng làm thôi chứ ko giải ra hết cho bạn chép đâu nha, đến đây tự thế vào là ra . Tự túc là hạnh phúc :)
Hok tốt . Nhìn câu b mik nản quá nên thôi :)
2. Câu hỏi của Chi Chi - Toán lớp 8 - Học toán với OnlineMath
Cho a+b=1. Tính giá trị biểu thức: A=a^2(2a-3)+b^2(-3+2b)
\(A=a^2\left(2a-3\right)+b^2\left(-3+2b\right)\)
\(=2a^3-3a^2-3b^2+2b^3\)
\(=2\left(a^3+b^3\right)-3a^2-3b^2\)
\(=2\left(a+b\right)\left(a^2-ab+b^2\right)-3a^2-3b^2\)
\(=2\left(a^2-ab+b^2\right)-3a^2-3b^2\)(vì a + b = 1)
\(=2a^2-2ab+2b^2-3a^2-3b^2\)
\(=-a^2-2ab-b^2=-\left(a^2+2ab+b^2\right)\)
\(=-\left(a+b\right)^2=-1^2=-1\)(vì a + b = 1)
bài 1: Cho : x+y= 3 . tính giá trị biểu thức: A= x^2+2xy+y^2 - 4x-4y+1
bài 2:cho a^2+b^2+c^2= m. tính giá trị biểu thức : B= (2a+2b-c)^2+(2b+2c-a)^2+(2c+2a-b)^2
2) (2a+2b-c)^2+(2b+2c-a)^2+(2c+2a-b)^2= (4a^2+4b^2+c^2+8ab-4ac-4bc)+(4b^2+4c^2+a^2+8bc-4ba-4ac)+(4c^2+4a^2+b^2+8ac-4cb-4ab) =9a^2+9b^2+9c^2
ma a^2+b^2+c^2=m => 9a^2+9b^2+9c^2=9m
bài 1
\(A=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(thay.x+y=3.tacoA=3^2-4.3+1=-2\)
Bài 6:Cho các số a,b,c khác 0 thỏa mãn
2a-2b+9c=9 Tính giá trị của M=a+3c/a+4b-3c
a-2b+6c=5
Bài 7 Cho a,b>0 thỏa mãn a+b=3.Tìm giá trị nhỏ nhất của biểu thức T=a^2+4/a+b^2/b+3
Bài 6:Cho các số a,b,c khác 0 thỏa mãn
2a-2b+9c=9 Tính giá trị của M=a+3c/a+4b-3c
a-2b+6c=5
Bài 7 Cho a,b>0 thỏa mãn a+b=3.Tìm giá trị nhỏ nhất của biểu thức T=a^2+4/a+b^2/b+3
cho các số a,b,c thỏa mãn 3a-2b/4=2c-4a/3=4b-3c/2 tính giá trị biểu thức A=3a+2b-c/3a-2b+c + 2a^2-b^2+c^2/2a^2+b^2-c^2
làm ơn trả lời hộ mk với ah mai mk phải nộp bài r
a) Cho a,b,c ∈ R thỏa mãn a+b+c = 0 và \(a^2+b^2+c^2\)=1. Tính giá trị của biểu thức S= \(a^2b^2+b^2c^2+c^2a^2\)
b) Cho đa thức bậc hai P(x) thỏa mãn P(1)=1, P(3)=3, P(7)=31. Tính giá trị của P(10)
a) Có:
\(a+b+c=0\\\Leftrightarrow\left(a+b+c\right)^2=0\\ \Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\\ \Leftrightarrow2ab+2bc+2ca=-1\\ \Leftrightarrow ab+bc+ca=-\dfrac{1}{2}\\ \Leftrightarrow\left(ab+bc+ca\right)^2=\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\dfrac{1}{4}-0=\dfrac{1}{4} \)