Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Ninh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 6 2017 lúc 8:52

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì ∠ (BAD) +  ∠ (BAE) +  ∠ (EAF) +  ∠ (FAD) = 360 0

⇒  ∠ (EAF) =  360 0  – ((BAD) + (BAE) + (FAD) )

Mà  ∠ (BAD) = α 2  (gt)

(BAE) =  60 0  (ΔBAE đều)

∠ (FAD) =  60 0  (ΔFAD đều)

Nên  ∠ (EAF) =  360 0  – ( α 2  +  60 0  +  60 0 ) =  240 0  –  α

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 7 2018 lúc 12:40

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có:

∠ (BAD) + ∠(ADC) = 180 0  (hai góc trong cùng phía bù nhau)

⇒  ∠ (ADC) =  180 0  -  ∠ (BAD) =  180 0  – α

∠ (CDF) =  ∠ (ADC) +  ∠ (ADF) =  180 0  - α 2 + 60 0 = 240 0 - α

Suy ra:  ∠ (CDF) =  ∠ (EAF)

Xét  ∆ AEF và ∆ DCF: AF = DF ( vì  ∆ ADF đều)

AE = DC (vì cùng bằng AB)

∠ (CDF) =  ∠ (EAF) (chứng minh trên)

Do đó:  ∆ AEF =  ∆ DCF (c.g.c) ⇒ EF = CF (1)

∠ (CBE) =  ∠ (ABC) + 60 0 = 180 0 - α + 60 0 = 240 0 - α

Xét ΔBCE và ΔDFC: BE = CD ( vì cùng bằng AB)

∠ (CBE) =  ∠ (CDF) = 240 0 - α

BC = DF (vì cùng bằng AD)

Do đó  ∆ BCE =  ∆ DFC (c.g.c) ⇒ CE = CF (2)

Từ (1) và (2) suy ra: EF = CF = CE

Vậy  ∆  ECF đều.

Kim Tae Huyng
Xem chi tiết

a) Vì ABCD là hình bình hành 

=> AB = CD ( tính chất) 

AD//BC 

AB//CD 

AD = BC ( tính chất) 

BAD = BCD ( tính chất) 

Vì E là trung điểm AD 

=> AE = ED 

Vì F là trung điểm BC 

=> BF = FC 

Mà AD = BC 

AE = ED = BF = FC

Xét ∆ABE và ∆FCD ta có : 

AB = CD 

AE = BF (cmt)

BAD = FCD ( cmt)

=> ∆ABE = ∆FCD (c.g.c)

b) Vì E\(\in\)AD 

\(\in\)BC 

Mà AD//BC 

=> ED//BF 

Mà ED = BF ( cmt)

=> EBFD là hình bình hành ( dấu hiệu nhận biết) 

c) Vì ABCD là hình bình hành 

=> AC và BD là 2 đường chéo cắt nhau tại trung điểm mỗi đường 

Hay AC và BD cắt nhau tại trung điểm BD (1)

Vì EBCD là hình bình hành 

=> BD và FE là 2 đường chéo cắt nhau tại trung điểm mỗi đường 

Hay FE và BD cắt nhau tại trung điểm BD (2)

Từ (1) và (2) => AC , BD , FE cắt nhau tại trung điểm BD 

=> AC,BD ,FE đồng quy

11	Hoàng Kiều Hưng
Xem chi tiết
Phuc Nguyen
Xem chi tiết
Nguyễn Thị Kim Anh
Xem chi tiết
Songoku Sky Fc11
10 tháng 9 2017 lúc 9:43

Hình bình hành lớp 8? | Yahoo Hỏi & Đáp

OoO_Nhok_Lạnh_Lùng_OoO
10 tháng 9 2017 lúc 9:52

Tính góc EAF 

EAF^ = 360* - (DAF^ + BAD^ + BAE^) = 360* - (60* + a + 60*) = 240* - a (1) 

b) Chứng minh rằng tam giác CEF là tam giác đều 

ABC^ = ADC^ = 180* - a 

=> CDF^ = ADC^ + ADF^ = 180* - a + 60* = 240* - a (2) 

CBE^ = ABC^ + ABE^ = 180* - a + 60* = 240* - a (3) 

AF = DF = AD = BC (4) 

CD = AB = BE = AE (5) 

(1) (2) (3) (4) và (5) => Δ CDF = ΔEBC = Δ EAF ( c.g.c) 

=> CF = CE = EF => CEF là tam giác đều

Nguyễn Bích Dịu
10 tháng 9 2017 lúc 9:56

a, tính gócEAF

AEF^= 360- (DAF^+BAD^+BAE^)= 360 -(60+a+60)= 240-a (1)

b, chứng minh rằng tam giác CEF là tam giác đều

ABC^= ADC^=180 -a

=>CDF^=ADC^+ADF^=180-a+60=240-a (2)

CBE^=ABC^+ABE^=180-a+60=240-a (3)

AF=DF=AD=BC (4)

CD=AB=AE=BE (5)

Từ (1) (2) (3) (4) (5)=> tam giácCDF= tam giác EBC= tam giác EAF (c.g.c)

=>CF= CE= EF=> tam giác CEF ĐỀU

Nguyễn Hiền
Xem chi tiết
Trương Quỳnh Hoa
Xem chi tiết
Sồng Thị Minh An
5 tháng 10 2016 lúc 21:11

đó là câu b

mai ngô
19 tháng 10 2017 lúc 12:50

nụ hôn trên giường

trần thị hương
5 tháng 4 2018 lúc 21:30
bạn vẽ hình ra đi tớ cm cho