cho a,b,c là độ dài 3 cạnh của tam giác. Chứng minh rằng: \(\frac{1}{a+b-c}\)+\(\frac{1}{b+c-a}\)+\(\frac{1}{c+a-b}\)\(\ge\)\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)
Cho độ dài 3 cạnh của một tam giác
Chứng minh rằng :\(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Áp dụng BĐT Cô-si dạng Engel,ta có :
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{2}{c}\)
\(\frac{1}{c+a-b}+\frac{1}{a+b-c}\ge\frac{\left(1+1\right)^2}{c+a-b+a+b-c}=\frac{2}{a}\)
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{2}{b}\)
Cộng lại theo vế rồi chia cho 2, ta có đpcm
Dấu "=" xảy ra khi a = b = c
Bài làm:
Ta xét: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)(BĐT Cauchy dạng cộng mẫu)
Tương tự ta chứng minh được:
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{2}{a}\)và \(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c}\)
Cộng vế 3 bất đẳng thức trên ta được:
\(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)
\(\Leftrightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Dấu "=" xảy ra khi: \(a=b=c\)
Sa
Cho a,b,c là độ dài 3 cạnh của 1 tam giác. Chứng minh rằng: \(2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\ge\frac{a}{c}+\frac{b}{a}+\frac{c}{b}+3\)
Cho a,b,c là độ dài 3 cạnh của tam giác có chu vi bằng 3. Chứng minh rằng:
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
cho a,b,c là độ dài 3 cạnh của 1 tam giác và abc=1. Chứng minh rằng: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge ab+bc+ca\)
Cho a, b, c là độ dài 3 cạnh của một tam giác
Chứng minh rằng: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
Tương tự cho các BĐT còn lại có:
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{2}{c};\frac{1}{c+a-b}+\frac{1}{a+b-c}\ge\frac{2}{a}\)
Cộng theo vế các BĐT trên ta có:
\(2VT\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=2VP\Rightarrow VT\ge VP\)
ĐẲng thức xảy ra khi \(a=b=c\)
Chứng minh rằng nếu a + b , b + c , c + a là độ dài ba cạnh của một tam giác thì \(\frac{1}{a+b},\frac{1}{b+c},\frac{1}{c+a}\) cũng là độ dài 3 cạnh của một tam giác
Ta có : a+b > c , b+c > a , c+a > b
Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)
Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)
Vậy ta có đpcm
Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)
Cho a,b,c là độ dài 3 cạnh của tam giác và a+b+c=3.CMR:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Bài này là bài chốt trong đề thi hsg toán 9 cấp huyện năm nay của đức thọ đó!
bạn vào Thư viện đề thi THCS Hoàng Xuân Hãn rồi bấm vào mục ở dưới dưới ak tên mục là
Đáp án đề thi hsg toán 9 huyện Đức Thọ năm học 2018-2019 Đây là bài cuối của đề ak!
mk gửi hình rồi đó! bạn có thấy nó hiện ra chưa?
Cho a,b,c là độ dài 3 cạnh của \(\Delta\). Chứng minh rằng
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
(*)Ta cần CM bất đẳng thức phụ: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Thật vậy: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}< =>\frac{x+y}{xy}\ge\frac{4}{x+y}< =>\left(x+y\right)^2\ge4xy\)
\(< =>x^2+2xy+y^2-4xy\ge0< =>x^2-2xy+y^2\ge0< =>\left(x-y\right)^2\ge0\) (luôn đúng)
Dấu "=" xảy ra <=> x=y
Do a,b,c là độ dài 3 cạnh của 1 tam giác nên hiển nhiên a > 0; b > 0;c > 0;a+b > 0;b+c-a > 0;c+a-b > 0
Áp dụng bất đẳng thức phụ ta có:
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{2b}=\frac{2}{b}\)
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{4}{2a}=\frac{2}{a}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{4}{2c}=\frac{2}{c}\)
Cộng theo vế các bất đẳng thức trên,ta có:
\(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=>\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(đpcm\right)\)
bn sử dòng thứ 5 1 tí cho mk: a+b-c > 0 nhé!
Cho a, b, c là độ dài 3 cạnh của 1 tam giác và \(P=\frac{a+b+c}{2}\). Chứng minh rằng:
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\).
Link https://lazi.vn/edu/exercise/cho-a-b-c-la-do-dai-3-canh-cua-mot-tam-giac-va-p-la-nua-chu-vi-chung-minh-1-p-a-1-p-b-1-p-c-21-a-a-b-1-c
chứng minh rằng nếu a;b;c là độ dài 3 cạnh của một tam giác thì \(\frac{1}{a+b};\frac{1}{b+c};\frac{1}{c+a}\)cũng là độ dài 3 cạnh của một tam giác