TRỤC CĂN THỨC Ở MẪU
a)\(\frac{1}{\sqrt{3}+\sqrt{2}+\sqrt{1}}\)
b)\(\frac{2\sqrt{3}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
c)\(\frac{12\sqrt{5}}{\sqrt{5}+\sqrt{2}-\sqrt{7}}\)
mọi người giúp em với ạ, em cảm ơn <3
BÀI TẬP TRỤC CĂN THỨC Ở MẪU
a) \(\frac{1}{\sqrt{3}+\sqrt{2}+\sqrt{1}}\)
b) \(\frac{2\sqrt{3}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
c) \(\frac{12\sqrt{5}}{\sqrt{5}+\sqrt{2}-\sqrt{7}}\)
d) \(\frac{23}{\sqrt{2}+\sqrt{3}-\sqrt{6}}\)
mọi người giúp mình với ạ, cảm ơn rất nhiều. iu mn <3
Thực hiện các phép tính sau:
a) \(\frac{\sqrt{7}-5}{2}-\frac{6-2\sqrt{7}}{4}+\frac{6}{\sqrt{7}-2}-\frac{5}{4+\sqrt{7}}\)
b) \(\frac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}-\frac{1}{\sqrt{3}+\sqrt{2}+\sqrt{5}}\)
c) \(\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)
Giúp em với mọi người ơi! Em đang rất cần!
1.Trục căn thức ở mẫu
\(\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
2.Rút gọn
a,\(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
b,\(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\)
c,\(\frac{1}{\sqrt{5}-\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{2}}-\frac{2}{\sqrt{5}+\sqrt{2}}\)
1.Trục căn thức ở mẫu
= \(\dfrac{a-2\sqrt{ab}+b}{a-b}\)
Trục căn ở mẫu:
\(a)\frac{5}{\sqrt{10}}\\ b)\frac{-2}{1-\sqrt{5}}\\ c)\frac{4}{\sqrt{3}+\sqrt{2}}\\ d)\frac{1}{3-2\sqrt{2}}\\ e)\frac{6-\sqrt{6}}{1-\sqrt{6}}\\ g)\frac{3\sqrt{2}-2\sqrt{3}}{2\left(\sqrt{3}-\sqrt{2}\right)}\\ h)\frac{\sqrt{3}-3}{\sqrt{3}-1}\\ i)\frac{\sqrt{15}}{5\sqrt{3}+3\sqrt{5}}\)
Trục căn thức ở mẫu và rút gọn
a, (\(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\))(\(\sqrt{6} +11\))
b,(\(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\))(\(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\))
c,\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\)- (\(\sqrt{2}+\sqrt{3}\))
d,(\(\frac{5-2\sqrt{5}}{2-\sqrt{5}}-2\))(\(\frac{5+3\sqrt{5}}{3+\sqrt{5}}-2\))
Trục căn thức ở mẫu
a)\(\frac{1}{2+\sqrt{3}}-\frac{1}{2-\sqrt{3}}+5\sqrt{3}\)
b)\(\frac{1}{\sqrt{5}+2}-\sqrt{9+4\sqrt{5}}\)
a/ \(\frac{1}{2+\sqrt{3}}-\frac{1}{2-\sqrt{3}}+5\sqrt{3}\)
\(=\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}-\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+5\sqrt{3}\)
\(=\frac{2-\sqrt{3}}{4-3}-\frac{2+\sqrt{3}}{4-3}+5\sqrt{3}\)
\(=2-\sqrt{3}-2-\sqrt{3}+5\sqrt{3}\)
\(=3\sqrt{3}\)
Vậy..
b/ \(\frac{1}{\sqrt{5}+2}-\sqrt{9+4\sqrt{5}}\)
\(=\frac{1}{\sqrt{5}+2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)
\(=\frac{1}{\sqrt{5}+2}-\left|\sqrt{5}+2\right|\)
\(=\frac{\sqrt{5}-2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}-\sqrt{5}-2\)
\(=\sqrt{5}-2-\sqrt{5}-2\)
\(=-4\)
Vậy..
1) Khử mẫu các biểu thức dưới dấu căn rồi thực hiện phép tính:
\(2\sqrt{\frac{3}{20}}+\sqrt{\frac{1}{60}}-\sqrt{\frac{1}{15}}\)
2) Trục căn thức ở mẫu:
a) \(\frac{9}{\sqrt{3}}\)
b) \(\frac{12}{3-\sqrt{3}}\)
c) \(\frac{\sqrt{2}+1}{\sqrt{2}-1}\)
d) \(\frac{7\sqrt{3}-5\sqrt{11}}{8\sqrt{3}-7\sqrt{11}}\)
e) \(\frac{1-a\sqrt{a}}{1-\sqrt{a}}\)
f) \(\frac{1}{\sqrt{18}+\sqrt{8}-2\sqrt{2}}\)
g) \(\frac{1}{1+\sqrt{2}-\sqrt{3}}\)
h) \(\frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{5}}\)
a) Ta có:
5√15+12√20+√5515+1220+5
=√52.15+√(12)2.20+√5=√25.15+√14.20+√5=√255+√204+√5=√5+√5+√5=(1+1+1)√5=3√5=52.15+(12)2.20+5=25.15+14.20+5=255+204+5=5+5+5=(1+1+1)5=35
b) Ta có:
√12+√4,5+√12,512+4,5+12,5
=√12+√92+√252=√12+√9.12+√25.12=√12+√32.12+√52.12=√12+3√12+5√12=(1+3+5).√12=9√12=91√2=9.√22=9√22=12+92+252=12+9.12+25.12=12+32.12+52.12=12+312+512=(1+3+5).12=912=912=9.22=922
c) Ta có:
√20−√45+3√18+√72=√4.5−√9.5+3√9.2+√36.2=√22.5−√32.5+3√32.2+√62.2=2√5−3√5+3.3√2+6√2=2√5−3√5+9√2+6√2=(2√5−3√5)+(9√2+6√2)=(2−3)√5+(9+6)√2=−√5+15√2=15√2−√520−45+318+72=4.5−9.5+39.2+36.2=22.5−32.5+332.2+62.2=25−35+3.32+62=25−35+92+62=(25−35)+(92+62)=(2−3)5+(9+6)2=−5+152=152−5
d) Ta có:
0,1√200+2√0,08+0,4.√50=0,1√100.2+2√0,04.2+0,4√25.2=0,1√102.2+2√0,22.2+0,4√52.2=0,1.10√2+2.0,2√2+0,4.5√2=1√2+0,4√2+2√2=(1+0,4+2)√2=3,4√2
Bạn giải bài đâu vậy? Kiếm điểm hỏi đáp hở, Boy anime?
1) \(=\frac{2\sqrt{3}}{\sqrt{20}}+\frac{1}{\sqrt{60}}-\frac{1}{\sqrt{15}}=\frac{6\sqrt{60}+\sqrt{60}-4\sqrt{15}}{60}=\frac{\sqrt{15}\left(12+2-4\right)}{60}=\frac{\sqrt{15}}{6}\)
a) \(=\frac{9}{\sqrt{3}}=\frac{9\sqrt{3}}{3}\)
b) \(=\frac{12\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}=\frac{36+12\sqrt{3}}{9-3}=6+2\sqrt{3}\)
c) \(=\frac{\left(\sqrt{2}+1\right)^2}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\frac{2+2\sqrt{2}+1}{2-1}=3+2\sqrt{2}\)
d) \(=\frac{\left(7\sqrt{3}-5\sqrt{11}\right)\left(8\sqrt{3}+7\sqrt{11}\right)}{\left(8\sqrt{3}-7\sqrt{11}\right)\left(8\sqrt{3}+7\sqrt{11}\right)}=\frac{217-9\sqrt{11}}{347}\)
e) \(=\frac{\left(1-a\sqrt{a}\right)\left(1+\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}=\frac{1+\sqrt{a}-a\sqrt{a}-a^2}{1-a}=a+\sqrt{a}+1\)
f) \(=\frac{1}{3\sqrt{2}-2\sqrt{2}+\sqrt{8}}=\frac{\sqrt{2}-\sqrt{8}}{\left(\sqrt{2}+\sqrt{8}\right)\left(\sqrt{2}-\sqrt{8}\right)}=\frac{\sqrt{2}}{6}\)
g) \(=\frac{1-\sqrt{2}+\sqrt{3}}{1-\left(\sqrt{2}-\sqrt{3}\right)^2}=\frac{1-\sqrt{2}+\sqrt{3}}{2\sqrt{6}-4}=\frac{\left(1-\sqrt{2}+\sqrt{3}\right)\left(2\sqrt{6}+4\right)}{\left(2\sqrt{6}-4\right)\left(2\sqrt{6}+4\right)}\)
\(=\frac{2\sqrt{6}+4-4\sqrt{3}-4\sqrt{2}+6\sqrt{2}+4\sqrt{3}}{24-16}=\frac{\sqrt{2}+\sqrt{6}+2}{4}\)
f) \(=\frac{\sqrt{2}-\sqrt{3}+\sqrt{5}}{\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right)}=\frac{\sqrt{2}-\sqrt{3}+\sqrt{5}}{2\sqrt{15}-6}\)
\(=\frac{\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right)\left(2\sqrt{15}+6\right)}{\left(2\sqrt{15}-6\right)\left(2\sqrt{15}+6\right)}=\frac{2\sqrt{30}+6\sqrt{2}-6\sqrt{5}-6\sqrt{3}+10\sqrt{3}+6\sqrt{5}}{60-36}\)
\(=\frac{\sqrt{30}+3\sqrt{2}+2\sqrt{3}}{12}\)
trục căn thức ở mẫu :
a,\(\frac{3}{\sqrt{5}};\frac{2\sqrt{3}}{\sqrt{2}};\frac{a}{\sqrt{b}};\frac{x+1}{\sqrt{x^2-1}}\)
b,\(\frac{1}{\sqrt{3}+\sqrt{2}};\frac{2}{2-\sqrt{3}};\frac{\sqrt{2}+1}{\sqrt{2}-1};\frac{3\sqrt{2}}{\sqrt{3}+1}\)
c,\(\frac{1}{1+\sqrt{2}+\sqrt{3}}\)
d,\(\frac{1}{\sqrt{2\sqrt{3}-\sqrt{2}}.\sqrt{2}.\sqrt{\sqrt{2}+\sqrt{3}}}\)
a) \(\frac{3}{\sqrt{5}}=\frac{3\sqrt{5}}{\sqrt{5}.\sqrt{5}}=\frac{3\sqrt{5}}{5}\)
\(\frac{2\sqrt{3}}{\sqrt{2}}=\frac{2\sqrt{3}.\sqrt{2}}{\sqrt{2}.\sqrt{2}}=\frac{2\sqrt{6}}{2}=\sqrt{6}\)
\(\frac{a}{\sqrt{b}}=\frac{a\sqrt{b}}{\sqrt{b}.\sqrt{b}}=\frac{a\sqrt{b}}{b}\)
\(\frac{x+1}{\sqrt{x^2-1}}=\frac{\left(x+1\right)\left(\sqrt{x^2-1}\right)}{\left(\sqrt{x^2-1}\right)\left(\sqrt{x^2-1}\right)}\) = \(\frac{\left(\sqrt{x^2-1}\right)\left(x+1\right)}{x^2-1}\)
câu c chắc là như này
\(\frac{1}{1+\sqrt{2}+\sqrt{3}}=1+\frac{1}{\sqrt{2}+\sqrt{3}}\) = \(1+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}\)
= \(1+\frac{\sqrt{2}-\sqrt{3}}{2-3}=1+\frac{\sqrt{2}-\sqrt{3}}{-1}\) = \(1-\sqrt{2}+\sqrt{3}\)
mọi người giúp em bài này với,em đang cần gấp ạ
bài 2:rút gọn các biểu thức sau
a)A=\(\sqrt{5-\sqrt{21}}+\sqrt{5+\sqrt{21}}\)
b)B=\(\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\frac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
c)C=\(\left(1+\frac{11-\sqrt{11}}{1-\sqrt{11}}\right)\left(\frac{11+\sqrt{11}}{1+\sqrt{11}}+1\right)\)
d)D=\(\frac{\sqrt{2}}{\sqrt{2}-\sqrt{3}}-\frac{\sqrt{2}}{\sqrt{2}+\sqrt{3}}\)
e)E=\(\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
a, \(\sqrt{2}A=\sqrt{10-2\sqrt{3.7}}+\sqrt{10+2\sqrt{3.7}}\)
\(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{7}\right)^2}\)
\(=\left|\sqrt{7}-\sqrt{3}\right|+\left|\sqrt{7}+\sqrt{3}\right|\)
\(=\sqrt{7}-\sqrt{3}+\sqrt{3}+\sqrt{7}=2\sqrt{7}\)
\(\Rightarrow A=\sqrt{14}\)
b, \(B=\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\frac{\sqrt{5}\left(\sqrt{5}-2\right)}{2\left(\sqrt{5}-2\right)}\)
\(=\sqrt{5}+\frac{\sqrt{5}}{2}=\frac{3\sqrt{5}}{2}\)
c, \(C=\left(1-\sqrt{11}\right)\left(\sqrt{11}+1\right)=1-11=-10\)
d, \(D=\frac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}{2-3}-\frac{\sqrt{2}\left(\sqrt{2}-\sqrt{3}\right)}{2-3}\)
\(=-2-\sqrt{6}+2-\sqrt{6}=-2\sqrt{6}\)