Tìm tất cả các số nguyên dương $n$ thỏa mãn:
$2^n+n|8^n+n$
Tìm tất cả các số nguyên dương n thỏa mãn \(n\le2021;n^5+2021⋮30\)
\(n^5+2021=30m\Leftrightarrow n^5-19=30\left(m-68\right)\)
\(\Rightarrow n^5\equiv19\left(mod30\right)\)
Mà \(19^5\equiv19\left(mod30\right)\Rightarrow n\equiv19\left(mod30\right)\)
\(\Rightarrow n=30k+19\) với \(\left\{{}\begin{matrix}k\le66\\k\in N\end{matrix}\right.\)
Tìm tất cả các số nguyên dương a sao cho tồn tại số nguyên dương n thỏa mãn a chia hết cho cả hai số n2 + 1 và (n + 1)2 + 1
tìm tất cả các số nguyên dương m,n thỏa mãn ; 9^m-3^m=n^4+2n^3+n^2+2n
1. tìm tất cả các số nguyên dương m, n thỏa mãn:
\(3^m=n^2+2n-8\)
Tìm tất cả các số nguyên dương a sao cho tồn tại số nguyên dương n thỏa mãn a chia hết cho cả hai số n2 + 1 và ( n + 1 )2 + 1
để n^2 +2002 là số chính phương
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0)
=> a^2 -n^2 =2002
=> (a-n)(a+n) =2002
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2
mà a-n -(a+n) =-2n chia hết cho 2
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4
=> vô lý
Ai giải được thì nhớ giải rõ ràng nhé! Xin cam ơn người giải được.
Bn tham khảo bài của chị tui nè:
để n^2 +2002 là số chính phương
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0)
=> a^2 -n^2 =2002
=> (a-n)(a+n) =2002
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2
mà a-n -(a+n) =-2n chia hết cho 2
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4
=> vô lý
Tìm tất cả các cặp số nguyên dương (m, n) thỏa mãn 6m + 2n + 2 là số chính phương.
Tìm tất cả các số nguyên dương m,n thỏa mãn \(9^m-3^m=n^4+2n^3+n^2+2n\)
Tìm tất cả các cặp số nguyên dương (m, n) thỏa mãn 6m + 2n + 2 là số chính phương.