Giải phương trình:
\(\frac{1}{\sqrt{2x+1}-\sqrt{3x}}=\frac{\sqrt{3x+2}}{1-x}\)
giải hệ phương trình \(\hept{\begin{cases}\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\\\sqrt{y+\sqrt{y}+x+2}+\sqrt{3x+1}=5\end{cases}}\)
\(\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\)
\(\Leftrightarrow\left(2x-\sqrt{y}\right)^2\left(x^2+x\sqrt{y}+y\right)=0\)
\(\hept{\begin{cases}\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\left(1\right)\\\sqrt{y+\sqrt{y}+x+2}+\sqrt{3x+1}=5\left(2\right)\end{cases}}\)
\(ĐK:y>0;\frac{-1}{3}\le x\ne0;y+\sqrt{y}+x+2\ge0\)
Đặt \(\sqrt{y}=tx\Rightarrow y=t^2x^2\)thay vào (1), ta được: \(\frac{1}{3x}+\frac{2x}{3t^2x^2}=\frac{x+tx}{2x^2+t^2x^2}\)
Rút gọn biến x ta đưa về phương trình ẩn t : \(\left(t-2\right)^2\left(t^2+t+1\right)=0\Leftrightarrow t=2\Leftrightarrow\sqrt{y}=2x\ge0\)
Thay vào (2), ta được: \(\sqrt{4x^2+3x+2}+\sqrt{3x+1}=5\)\(\Leftrightarrow\left(\sqrt{4x^2+3x+2}-3\right)+\left(\sqrt{3x+1}-2\right)=0\)\(\Leftrightarrow\frac{\left(x-1\right)\left(4x+7\right)}{\sqrt{4x^2+3x+2}+3}+\frac{3\left(x-1\right)}{\sqrt{3x+1}+2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{4x+7}{\sqrt{4x^2+3x+2}+3}+\frac{3}{\sqrt{3x+1}+2}\right)=0\)
Dễ thấy \(\frac{4x+7}{\sqrt{4x^2+3x+2}+3}+\frac{3}{\sqrt{3x+1}+2}>0\)nên \(x-1=0\Leftrightarrow x=1\Rightarrow y=4\)
Vậy hệ phương trình có 1 nghiệm duy nhất \(\left(x,y\right)=\left(1,4\right)\)
Giải các bất phương trình sau:
a) \(\sqrt{2-|x-2|}>x-2\)
b) \(x^2+3x+2\geq 2\sqrt{x^2+3x+5}\)
c) \(4\sqrt{x}+\frac{2}{\sqrt{x}}<2x+\frac{1}{2x}+2\)
Giải phương trình \(\frac{1}{\sqrt[3]{x}}+\frac{1}{\sqrt[3]{3x+1}}=\frac{1}{\sqrt[3]{2x-1}}+\frac{1}{\sqrt[3]{2x+2}}\)với \(x>\frac{1}{2}\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
x=1 là nghiệm, nhân liên hợp dc bn mình làm nãy giờ mà ấn gửi nó báo Please_Sign_In nản luôn =="
a)Giải các phương trình sau bằng phương pháp đặt ẩn phụ:
1) \(x^2-3x-3=\frac{3\left(\sqrt[3]{x^3-4x^2+4}-1\right)}{1-x}\) ;2)\(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
b) Giải các phương trình sau(không giới hạn phương pháp):
1)\(2\left(1-x\right)\sqrt{x^2+2x-1}=x^2-2x-1\) ; 2)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)
3)\(\frac{3x^2+3x-1}{3x+1}=\sqrt{x^2+2x-1}\) ; 4) \(\frac{2x^3+3x^2+11x-8}{3x^2+4x+1}=\sqrt{\frac{10x-8}{x+1}}\)
5)\(13x-17+4\sqrt{x+1}=6\sqrt{x-2}\left(1+2\sqrt{x+1}\right)\);
6)\(x^2+8x+2\left(x+1\right)\sqrt{x+6}=6\sqrt{x+1}\left(\sqrt{x+6}+1\right)+9\)
7)\(x^2+9x+2+4\left(x+1\right)\sqrt{x+4}=\frac{5}{2}\sqrt{x+1}\left(2+\sqrt{x+4}\right)\)
8)\(8x^2-26x-2+5\sqrt{2x^4+5x^3+2x^2+7}\)
À do nãy máy lag sr :) Chứ bài đặt ẩn phụ mệt lắm :)
Giaỉ hệ phương trình :
\(\hept{\frac{\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\left(1\right)}{\sqrt{y+\sqrt{y}+x+2}+\sqrt{3x+1}=5\left(2\right)}}\)
Giải phương trình : \(10+\sqrt{3x^2}+3x+\frac{\sqrt{3}}{x^3}=5\sqrt{3x^2}+2x+\frac{2\sqrt{3}-1}{x}+\frac{5}{x^2}\)
giải các phương trình vô tỉ sau
\(2x+\sqrt{4-2x^2}+\sqrt{6-y}+\sqrt{22-y}=10\)
\(\frac{3x+3}{\sqrt{x}}=4+\frac{x+1}{\sqrt{x^2}-x+1}\)
\(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
Giải phương trình
1) \(\sqrt{x+1}+\sqrt{2x+3}=\sqrt{3x}+\sqrt{2x-2}\)
2) \(2x+\sqrt{x+\sqrt{x-\frac{1}{4}}}=2\)
1) Tập xác định Mọi \(x\ge1\)
Vậy \(\sqrt{3x}-\sqrt{x+1}=\sqrt{2x+3}-\sqrt{2x-2}\)
Bình phương 2 vế rút gọn được \(x^2-x-6=0\)
\(\Rightarrow\)\(x=3\)
2) Điều kiện xác định là \(\hept{\begin{cases}x-\frac{1}{4}\ge0\\2-2x\ge0\end{cases}}\)\(\Rightarrow\)\(\frac{1}{4}\le x\le1\)
Đặt \(\sqrt{x-\frac{1}{4}}=U\)\(\Rightarrow x=U^2+\frac{1}{4}\) Với điều kiện xác đinh trên thì \(U\ge0\) , thay vào phương trình gốc được
\(2\left(U^2+\frac{1}{4}\right)+\sqrt{U^2+\frac{1}{4}+U}-2=0\)
\(\Leftrightarrow2U^2+\sqrt{\left(U+\frac{1}{2}\right)^2}-\frac{3}{2}=0\)
\(\Leftrightarrow2U^2+\left(U+\frac{1}{2}\right)-\frac{3}{2}=0\)
Đến đây quá đơn giản vì đây là pt bậc 2 bình thường , kết hợp điều kiện xác định giải ta được
\(U=\frac{1}{2}\Leftrightarrow\sqrt{x-\frac{1}{4}}=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
Giải phương trình
\(2\sqrt{\frac{3x-1}{x}}=\frac{x}{3x-1}+1\)
\(3\sqrt{\frac{2x}{x-1}}+4\sqrt{\frac{x-1}{2x}}=3.\frac{x-1}{2x}+10\)
Đặt \(\sqrt{\frac{3x-1}{x}}=a\)
\(pt\Leftrightarrow2a=\frac{1}{a^2}+1\)
\(\Leftrightarrow\frac{1}{a^2}-2a+1=0\)
\(\Leftrightarrow\frac{-2a^3+a^2+1}{a^2}=0\)
\(\Leftrightarrow-2a^3+a^2+1=0\)
\(\Leftrightarrow-2a^3+2a^2-a^2+a-a+1=0\)
\(\Leftrightarrow-2a^2\left(a-1\right)-a\left(a-1\right)-\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(-2a^2-a-1\right)=0\)
Dễ chứng minh \(-2a^2-a-1< 0\forall a\)
\(\Rightarrow a-1=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt{\frac{3x-1}{x}}=1\)
\(\Leftrightarrow3x-1=x\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy....
Đặt \(\sqrt{\frac{2x}{x-1}}=a\)
\(pt\Leftrightarrow3a+\frac{4}{a}=\frac{3}{a^2}+10\)
\(\Leftrightarrow\frac{3}{a^2}-\frac{4}{a}-3a+10=0\)
\(\Leftrightarrow\frac{-3a^3+10a^2-4a+3}{a^2}=0\)
\(\Leftrightarrow-3a^3+10a^2-4a+3=0\)
Giải pt ta được \(a=3\)
\(\Leftrightarrow\sqrt{\frac{2x}{x-1}}=3\)
\(\Leftrightarrow\frac{2x}{x-1}=9\)
\(\Leftrightarrow x=\frac{9}{7}\)
Vậy...