Chứng minh rằng với b > 0 , d > 0 và a/b < c/d thì a/b < a+c/b^2 + d^2 < c/d
Cho 2 số hữu tỉ a/b và c/d (với b>0, d>0)
Chứng minh rằng: nếu a/b < c/d thì a.d < b.c
a. Mẫu chung b.d > 0 (do b > 0; d > 0) nên nếu: thì da < bc
b. Ngược lại nếu a.d < b.c thì Ta có thể viết:
Bài 2: a. Chứng tỏ rằng nếu (b > 0; d > 0) thì
b. Hãy viết ba số hữu tỉ xen giữa và
Giải: a) Theo bài 1 ta có: (1)
Thêm a.b vào 2 vế của (1) ta có: a.b + a.d < b.c + a.b
a(b + d) < b(c + a) (2)
Thêm c.d vào 2 vế của (1): a.d + c.d < b.c + c.d
d(a + c) < c(b + d) (3) Từ (2) và (3) ta có:
a.d<b.c
Chúc bạn học tốt!!!! ^-^
Chứng minh rằng nếu a+b/b+c =c+d/d+a (c+d khác 0) thì a=c và a+b+c+d=0
( với abc # 0 và các mẫu đều khác 0)
cho 2 số hữu tỉ a/b và c/d (b>0 d>0).chứng minh rằng :nếu a/b<c/d thì a/b<a+c/b+d
áp dụng so sánh -2/3 và 3/5
Cho 2 số hữu tỉ a/b và c/d với b>0, d >0. Chứng tỏ rằng nếu a/b < c/d thì a/b < a+c/b+d < c/d
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
Chứng minh rằng nếu a + c = 2b và 2bd = c ( b + d ) thì a/b = c/d với b, d khác 0
cho 2 ps a/b và c/d (b>0,d>0). Chứng minh rằng ad < bc thì a/b<c/d và ngược lại.
Ta đã biết:
\(ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\) (1)
Theo (1) có: \(ad< bc\Leftrightarrow\frac{a}{b}< \frac{c}{d}\)
Chứng minh tương tự với trường hợp ngược lại, có \(\frac{a}{b}>\frac{c}{d}\)
Giúp mình với :
Cho 2 số hữu tỉ a/b và c/d với b > 0 ; d > 0 . Chứng tỏ rằng nếu a/b < c/d thì a/b < a+c/b+d
Lớp 7 mới học số hửu tỷ
Mình ấn vội quá nên nhầm
Xin lỗi nhé
Cái này của lớp 7