\(\frac{-2}{1,5}\) = \(\frac{x}{3}\)
tính :
( 2,7 + 1,8 ) * 2 * 1,5 =
\(\left(\frac{6}{5}x\frac{3}{4}\right)x2x\frac{2}{3}=\)
2,7 * 1,8 * 1,5 =
\(\frac{6}{5}x\frac{3}{4}x\frac{2}{3}=\)
16 * 16 * 6 =
câu 1=3,5
câu 2=6/5
câu 3=7,29
câu 4=3/5
câu 5=4096
(2,7+1,8)*2*1,5=4,5*2*1,5 =9*1,5 =13,5 (6/5*3/4)*2*2/3=9/10*2*2/3 =9/5*2/3 =6/5 2,7*1,8*1,5=7,29 6/5*3/4*2/3=3/5 16*16*6=1536
tính :
( 2,7 + 1,8 ) * 2 * 1,5 =
\(\left(\frac{6}{5}x\frac{3}{4}\right)x2x\frac{2}{3}=\)
2,7 * 1,8 * 1,5 =
\(\frac{6}{5}x\frac{3}{4}x\frac{2}{3}=\)
16 * 16 * 6 =
tính giúp mình với
\(\left(2,7+1,8\right).2.1,5=13,5\)
\(\left(\frac{6}{5}.\frac{3}{4}\right).2.\frac{2}{3}=1,2\)
\(2,7.1,8.1,5=7,29\)
\(\frac{6}{5}.\frac{3}{4}.\frac{2}{3}=0,6\)
\(16.16.6=1536\)
= 13,5.
= \(\frac{6}{5}\).
= 7,29.
= \(\frac{3}{5}\).
= 1536.
Đúng 100% luôn!
Ai tk cho mình mình tk lại.
Tìm x ,y thỏa mãn:
\(|\frac{2}{3}-\frac{1}{2}+\frac{3}{4}x|+|1,5-\frac{11}{17}+\frac{23}{13}y|=0\)
Lời giải :
Do \(VT\ge0\forall x;y\)nên ta có hệ :
\(\hept{\begin{cases}\frac{2}{3}-\frac{1}{2}+\frac{3}{4}x=0\\1,5-\frac{11}{17}+\frac{23}{13}y=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{9}\\y=\frac{-377}{782}\end{cases}}\)
Vậy...
a. \(\frac{2}{3}x+\frac{5}{7}=\frac{3}{10}\)
b.\(-\frac{21}{13}x+\frac{1}{3}=-\frac{2}{3}\)
c. |x-1,5|=2
d.\(\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\)
a) \(\frac{2}{3}x+\frac{5}{7}=\frac{3}{10}\)
\(\Leftrightarrow\frac{2}{3}x=\frac{3}{10}-\frac{5}{7}\)
\(\Leftrightarrow\frac{2}{3}x=-\frac{29}{70}\)
\(\Leftrightarrow x=-\frac{29}{70}:\frac{2}{3}\)
\(\Leftrightarrow x=-\frac{87}{140}\)
b) \(-\frac{21}{13}x+\frac{1}{3}=-\frac{2}{3}\)
\(\Leftrightarrow-\frac{21}{13}x=-\frac{2}{3}-\frac{1}{3}\)
\(\Leftrightarrow-\frac{21}{13}x=-1\)
\(\Leftrightarrow x=-1:\left(-\frac{21}{13}\right)\)
\(\Leftrightarrow x=\frac{13}{21}\)
c) \(\left|x-1,5\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1,5=2\\x-1,5=-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3,5\\x=-0,5\end{matrix}\right.\)
d) \(\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\)
\(\Leftrightarrow\left|x+\frac{3}{4}\right|=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{4}\\x=\frac{5}{4}\end{matrix}\right.\)
a) \(\frac{2}{3}x+\frac{5}{7}=\frac{3}{10}\)
=> \(\frac{2}{3}x=\frac{3}{10}-\frac{5}{7}\)
=> \(\frac{2}{3}x=-\frac{29}{70}\)
=> \(x=-\frac{29}{70}:\frac{2}{3}\)
=> \(x=-\frac{29}{70}.\frac{3}{2}\)
=> \(x=-\frac{87}{140}\)
b) \(-\frac{21}{13}x+\frac{1}{3}=-\frac{2}{3}\)
=> \(-\frac{21}{13}x=-\frac{2}{3}-\frac{1}{3}\)
=> \(-\frac{21}{13}x=-\frac{3}{3}\)
=> \(-\frac{21}{13}x=1\)
=> \(x=1:\left(-\frac{21}{13}\right)\)
=> \(x=-\frac{13}{21}\)
c) \(\left|x-1,5\right|=2\)
=> \(\left[{}\begin{matrix}x-1,5=2\\x-1,5=-2\end{matrix}\right.=>\left[{}\begin{matrix}x=2+1,5\\x=-2+1,5\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=3,5\\x=-0,5\end{matrix}\right.=>\left[{}\begin{matrix}x=\frac{7}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)(T/M)
d) \(\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\)
=> \(\left|x+\frac{3}{4}\right|=\frac{1}{2}\)
=> \(=>\left[{}\begin{matrix}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{matrix}\right.=>\left[{}\begin{matrix}x=\frac{1}{2}-\frac{3}{4}\\x=-\frac{1}{2}-\frac{3}{4}\end{matrix}\right.=>\left[{}\begin{matrix}x=-\frac{1}{4}\\x=-\frac{5}{4}\end{matrix}\right.\)(T/M)
HỌC TỐT
\(\frac{-2}{1,5}=\frac{x-1}{3}\)tim x
\(\frac{-2}{1,5}=\frac{-2.2}{1,5.2}=\frac{-4}{3}=\frac{x-1}{3}\)
\(\Rightarrow x-1=-4\)\(\Rightarrow x=-3\)
Vậy \(x=-3\)
Giải hệ phương trình :
\(\hept{\begin{cases}\frac{5}{x+y-3}-\frac{2}{x-y+1}=8\\\frac{3}{x+y-3}+\frac{1}{x-y+1}=1,5\end{cases}}\)
Có: \(ĐKXĐ:\hept{\begin{cases}x+y-3\ne0\\x-y+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne3-y\\x\ne y-1\end{cases}}}\)
Đặt: \(\hept{\begin{cases}x+y-3=a\\x-y+1=b\end{cases}}\)(1)
\(HPT\Leftrightarrow\hept{\begin{cases}\frac{5}{a}-\frac{2}{b}=8\\\frac{3}{a}+\frac{1}{b}=1,5\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{5}{a}-\frac{2}{b}=8\\\frac{6}{a}+\frac{2}{b}=3\end{cases}}\Leftrightarrow\frac{11}{a}=11\Leftrightarrow a=1}\)
Bn giải b xong rồi giải tiếp HPT (1)
Tìm x:
a)\(\frac{3}{4}+\frac{1}{4}:x=\frac{2}{5}\)
b)|x-2,5|=1,5
\(a,\frac{3}{4}+\frac{1}{4}:x=\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{4}:x=\frac{2}{5}-\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}:x=\frac{8}{20}-\frac{15}{20}\)
\(\Leftrightarrow\frac{1}{4}:x=\frac{-7}{20}\)
\(\Leftrightarrow x=\frac{1}{4}.\frac{20}{-7}\)
\(\Leftrightarrow x=\frac{20}{-28}\)
\(b,|x-2,5|=1,5\)
\(\Leftrightarrow\orbr{\begin{cases}x-2,5=1,5\\x-2,5=-1,5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1,5+2,5\\x=-1,5+2,5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
\(\frac{3}{4}+\frac{1}{4}:x=\frac{2}{5}\) \(/x-2.5/=1.5\)
\(\frac{1}{4}:x=\frac{2}{5}-\frac{3}{4}\) \(\Rightarrow x-2.5=1.5;x-2.5=-1.5\)
\(\frac{1}{4}:x=-\frac{7}{20}\) \(TH1:x-2.5=1.5\Rightarrow x=4\)
\(x=\frac{1}{4}:-\frac{7}{20}\) \(TH2:x-2.5=-1.5\Rightarrow1\)
\(x=-\frac{5}{7}\)
1, tìm x
\(5\frac{2}{3}x+1\frac{2}{3}=4\frac{1}{2}\)
\(\frac{x}{27}=\frac{-2}{9}\)
|x+1,5|=2
2, tìm GTLN của biểu thức A=|x-1004|-|x+1003|
+) \(5\frac{2}{3}x+1\frac{2}{3}=4\frac{1}{2}\Leftrightarrow\frac{17}{3}x+\frac{5}{3}=\frac{9}{2}\Leftrightarrow\frac{17}{3}x=\frac{17}{6}\Leftrightarrow x=\frac{1}{2}\)
+) \(\frac{x}{27}=\frac{-2}{9}\Leftrightarrow x=\frac{-2}{9}.27=-6\)
+) \(\left|x+1,5\right|=2\Leftrightarrow\orbr{\begin{cases}x+1,5=2\\x+1,5=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0,5\\x=-3,5\end{cases}}}\)
+) \(A=\left|x-1004\right|-\left|x+1003\right|\)
Ta có BĐT \(\left|x\right|-\left|y\right|\le\left|x-y\right|,\)dấu "=" xảy ra khi và chỉ khi x,y cùng dấu hay \(xy\ge0\)
Áp dụng: \(A=\left|x-1004\right|-\left|x+1003\right|\le\left|x-1004-x-1003\right|=\left|-2007\right|=2007\)
Vậy \(maxA=2007\Leftrightarrow\left(x-1004\right)\left(x+1003\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\ge1004\\x\le-1003\end{cases}}\)
\(\frac{\left(x+1\right)}{1,5}=\frac{3}{2\left(x+1\right)}\)
\(\frac{\left(x+1\right)}{1,5}=\frac{3}{2\left(x+1\right)}\)
\(\Leftrightarrow\left(x+1\right).2\left(x+1\right)=1,5.3\)
\(\Leftrightarrow\left(x+1\right).2x+2=\frac{9}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=\frac{9}{2}\\2x+2=\frac{9}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\2x=\frac{5}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{5}{4}\end{cases}}}\)
\(\frac{x+1}{1,5}=\frac{3}{2\left(x+1\right)}\)
\(\Rightarrow2\left(x+1\right)^2=4,5\)
\(\Rightarrow\left(x+1\right)^2=\frac{9}{4}\)
\(\Rightarrow\orbr{\begin{cases}x+1=\sqrt{\frac{9}{4}}\\x+1=-\sqrt{\frac{9}{4}}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{5}{2}\end{cases}}\)
\(\frac{2}{3}-1\frac{4}{15}x=\frac{-3}{5}\)
-23+0,5x=1,5
\(\frac{2}{3}-1\frac{4}{15}x=\frac{-3}{5}\)
\(1\frac{4}{15}x=\frac{19}{15}\)
\(x=1\)
- 2 3 + 0,5 x = 1,5
- 8 + 0,5 x = 1,5
0,5 x = 9,5
x = 19