Chứng minh
2√222(√3−2)(3−2) + (1+2√2)2(1+22)2- 2√626 = 9
Quan sát 11 - 2 = 9 = 32
1111 - 22 = 1089 = 332
hãy chứng minh rằng : 111....1 - 222....2 là số chính phương
( biết 111...1 có 2n chữ số 1 và 222....2 có n chữ số 2 )
quan sát 11-2=9=32;1111-22=1089=332 hãy chứng minh rằng A =111...111(2n chữ số 1)-2222...222(n chữ số 2) là số chính phương
Cho \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}.\) Chứng minh rằng: \(S>\dfrac{9}{22}\)
Ta có:
1/2^2 > 1/2.3
1/3^2 > 1/3.4
...
1/10^2 > 1/10.11
-> Cộng dọc theo vế ta có:
1/2^2+1/3^2+...+1/10^2 > 1/2.3+1/3.4+...+1/10.11
= 1/2-1/3+1/3-1/4+...+1/10-1/11
= 1/2 - 1/11 = 9/22 (đpcm)
\(A=-5^{22}-\left\{-222-\left[-122-\left(100-5^{22}\right)+2022\right]\right\}\)
\(B=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{20}\left(1+2+3+...+20\right)\)
\(C=\dfrac{5.4^6.9^4-3^9.\left(-8\right)^4}{4.2^{13}.3^8+2.8^4.\left(-27\right)^3}\)
A = - 522 - { - 222 - [ - 122 - (100 - 522) + 2022] }
A = - 522 - { -222 - [- 122 - 100 + 522 ] + 2022}
A = - 522 - { -222 - { - 222 + 522 } + 2022}
A = - 522 - {- 222 + 222 - 522 + 2022}
A = -522 + 522 - 2022
A = - 2022
B = 1 + \(\dfrac{1}{2}\)(1 + 2) + \(\dfrac{1}{3}\).(1 + 2 + 3) + ... + \(\dfrac{1}{20}\).(1 + 2+ 3 + ... + 20)
B = 1+\(\dfrac{1}{2}\)\(\times\)(1+2)\(\times\)[(2-1):1+1]:2+ ... + \(\dfrac{1}{20}\)\(\times\) (20 + 1)\(\times\)[(20-1):1+1]:2
B = 1 + \(\dfrac{1}{2}\) \(\times\) 3 \(\times\) 2:2 + \(\dfrac{1}{3}\) \(\times\)4 \(\times\) 3 : 2+....+ \(\dfrac{1}{20}\) \(\times\)21 \(\times\) 20 : 2
B = 1 + \(\dfrac{3}{2}\) + \(\dfrac{4}{2}\) + ....+ \(\dfrac{21}{2}\)
B = \(\dfrac{2+3+4+...+21}{2}\)
B = \(\dfrac{\left(21+2\right)\left[\left(21-2\right):1+1\right]:2}{2}\)
B = \(\dfrac{23\times20:2}{2}\)
B = \(\dfrac{23\times10}{2}\)
B = 23
chứng tỏ các hiệu sau là số chính phương:
A= 111..11 (100 số 1) - 222..222 (50 số 2)
B= 111..11 (50 số 1) - 999..99 (50 số 9)
C= 111..11 (2n chữ số 1) - 22..22 (n chữ số 2)
Cho S = 1/22+1/32+1/42+....+1/102 Chứng minh rằng: S > 9/22
\(S=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{10^2}\)
\(S>\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{10.11}\)
\(S>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{11}\)
\(S>\frac{1}{2}-\frac{1}{11}=\frac{11}{22}-\frac{2}{22}=\frac{9}{22}\)
Vậy S > 9/22
a = 999...91 (có 2005 chữ số mà có 2004 chữ số 9)
b = 222...22 (có 2005 chữ số 2)
chứng minh a.b-5 chia hết cho 3
Cho 2 số a và b, biết:
a = 999...91 (có 2005 chữ số mà 2004 chữ số đầu đều bằng 9)
b = 222...22 (có 2005 chữ số đều bằng 2)
Chứng minh rằng: a.b - 5 chia hết cho 3
Cho a=999...91(Có 2005 chữ số mà 2004 chữ số đầu là 9) và b=222...22(Có 2005 chữ số 2). Chứng minh a.b -5 chia hết cho 3.
Chứng minh: 2 2 3 - 2 + 1 + 2 2 2 - 2 6 = 9
Ta có:
2 2 3 - 2 + 1 + 2 2 2 - 2 6 = 2 6 - 4 2 + 1 + 4 2 + 8 - 2 6 = 1 + 8 = 9
= 2√6 - 4√2 + 1 + 4√2 + 8 - 2√6 = 1 + 8 = 9
Vế trái bằng vế phải nên đẳng thức được chứng minh.