Ta có:
2 2 3 - 2 + 1 + 2 2 2 - 2 6 = 2 6 - 4 2 + 1 + 4 2 + 8 - 2 6 = 1 + 8 = 9
= 2√6 - 4√2 + 1 + 4√2 + 8 - 2√6 = 1 + 8 = 9
Vế trái bằng vế phải nên đẳng thức được chứng minh.
Ta có:
2 2 3 - 2 + 1 + 2 2 2 - 2 6 = 2 6 - 4 2 + 1 + 4 2 + 8 - 2 6 = 1 + 8 = 9
= 2√6 - 4√2 + 1 + 4√2 + 8 - 2√6 = 1 + 8 = 9
Vế trái bằng vế phải nên đẳng thức được chứng minh.
Chứng minh 2√2(√3-2) + (1+2√2)^2 - 2√6 = 9
chứng minh
\(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
Chứng minh đẳng thức
\(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
Chứng minh đẳng thức
\(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}-1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
chứng minh
\(\dfrac{3}{2}\)\(\sqrt{6}+2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{2}}=\dfrac{\sqrt{6}}{6}\)
rút gọn
D=\(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}\)\(-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}+1}\)
Chứng minh rằng : \(\frac{1}{^{1^2}}+\frac{1}{^{2^2}}+\frac{1}{^{3^2}}+...=\frac{\pi^2}{6}\)
1) Giải phương trình: \(2x^2+\sqrt{5x+6}+\sqrt{7x+11}=4x+9\)
2) Với a,b,c là các số thực dương thỏa mãn a+b<3. Chứng minh: \(\sqrt{a+3}+2\sqrt{b+3}< 6\)
Chứng minh: \(\sqrt[3]{\sqrt[3]{2}}-1=\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\)
Chứng minh các số sau là số nguyên:
\(\frac{3\sqrt{2}+2\sqrt{2}}{\sqrt{3}+\sqrt{2}}+\frac{\sqrt{6}+6}{\sqrt{6}+1}\)
1)Chứng minh
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{2015}+\sqrt{2016}}=\sqrt{2016}-1\)
2:Giải Phương trình:
\(\frac{3}{2}\sqrt{4x-8}-9\sqrt{\frac{x-2}{81}}=6\)