Những câu hỏi liên quan
Hà Lê
Xem chi tiết
Rau
8 tháng 7 2017 lúc 13:07

\(-1=-\left(a^2+b^2+c^2\right)=>-1\le2\left(ab+bc+ca\right).\\ < =>\left(a+b+c\right)^2\ge0.\)
Luôn đúng .
\(a^2+b^2+c^2=1\ge ab+bc+ca\)

Bình luận (0)
zZz Cool Kid_new zZz
Xem chi tiết
tth_new
22 tháng 6 2020 lúc 20:45

Đợi t qua thi nhé full.

Bình luận (0)
 Khách vãng lai đã xóa
trần xuân quyến
Xem chi tiết
tth_new
18 tháng 2 2020 lúc 9:13

Bài này dùng AM-GM chắc cũng nhàm rồi nên em đổi kiểu nha.

\(VP-VT=\Sigma_{cyc}\frac{\left(ab+ac-2bc\right)^2+bc\left(b-c\right)^2}{2abc\left(b+c\right)\left(a^2+bc\right)}\ge0\)

Bình luận (0)
 Khách vãng lai đã xóa
Trương Quang Huy Hoàng
Xem chi tiết
Trang-g Seola-a
Xem chi tiết
le dinh tien
Xem chi tiết
Thắng Nguyễn
2 tháng 8 2018 lúc 12:41

nguoc dau ?

Bình luận (0)
minh
Xem chi tiết
Yim Yim
21 tháng 5 2018 lúc 20:19

\(\frac{\sqrt{ab}}{c+2\sqrt{ab}}=\frac{1}{2}\left(\frac{x+2\sqrt{xy}-z}{z+2\sqrt{xy}}\right)=\frac{1}{2}\left(1-\frac{z}{z+2\sqrt{xy}}\right)\le\frac{1}{2}\left(1-\frac{z}{x+y+z}\right)\)

Tương tự \(\frac{\sqrt{yz}}{x+2\sqrt{yz}}\le\frac{1}{2}\left(1-\frac{x}{x+y+z}\right)\);\(\frac{\sqrt{xz}}{y+2\sqrt{xz}}\le\frac{1}{2}\left(1-\frac{y}{x+y+z}\right)\)

Cộng vế theo vế ta được \(\frac{\sqrt{xy}}{z+2\sqrt{xy}}+\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{zx}}{y+2\sqrt{zx}}\le\frac{1}{2}\left(3-1\right)=1\)

Bình luận (0)
minh
21 tháng 5 2018 lúc 20:29

bạn cho mình hỏi x,y,z là j vậy bạn

Bình luận (0)
minh
21 tháng 5 2018 lúc 20:32

ok, mik hiểu r, cảm ơn bạn nhiều

Bình luận (0)
Ngô Đức Anh
Xem chi tiết
Rinu
23 tháng 8 2019 lúc 18:58

Bài làm:

Mk cx ko chắc nx nha !

\(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\)

\(=3-\left(\frac{a+b}{a+b+1}+\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}\right)\)(mk không biết cách viết nên ns nhé, tổng trong ngoặc { m, là

cái Tổng trong ngoặc dưới tổng có một dấu ngoặc nhọn, dưới dấu ngặc nhọn có M}

Áp dụng BĐT Cauchy-Schwarz:

\(M=\frac{\left(a+b\right)^2}{\left(a+b\right)\left(a+b+1\right)}+\frac{\left(b+c\right)^2}{\left(b+c\right)\left(b+c+1\right)}+\frac{\left(c+a\right)^2}{\left(c+a\right)\left(c+a+1\right)}\)\(\ge\frac{4\left(a+b+c\right)^2}{\left(a+b\right)\left(a+b+1\right)\left(b+c\right)\left(b+c+1\right)\left(c+a\right)\left(c+a+1\right)}\)

\(=\frac{4\left(a^2+b^2+c^2+2ab+2bc+2ca\right)}{2\left(a^2+b^2+c^2+ab+bc+ca\right)+2\left(a+b+c\right)}\ge\frac{4\left(a^2+b^2+c^2+2ab+2bc+2ca\right)}{2\left(a^2+b^2+c^2+ab+bc+ca\right)+2\left(ab+bc+ca\right)}\)

\(=2\)

(Do \(a+b+c\le ab+bc+ca\))

Vậy \(M\ge2\)

\(\Rightarrow\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}=3-M\le1\)(Đpcm)

Dấu ''='' xảy ra khi a=b=c=1

Bình luận (0)
Darlingg🥝
4 tháng 9 2019 lúc 17:33

Chép bài à bn tại sao \(A=\frac{1}{a+b+1}\) thế 2 ở bên kia đ?

Hơn nữa bất đẳng thức bn sai bét rồi người ta bảo bất đẳng thức bên kia mà sao bạn cho tổng luôn 

3- lấy đâu ra kết quả phải là \(2^2\)chứ 

Nếu ghi sai đề bài là bn sai cả bài k chắc đ :)

Ngoài ra các tổng bên ngoặc k có 4 hay 2 gì hết sai hết r nhé 

Bình luận (0)
Trần Anh Thơ
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 5 2020 lúc 15:24

Áp dụng BĐT Bunhiacopxki:

\(\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)\ge\left(ab+bc+ca\right)^2\)

\(\Rightarrow\frac{ab}{a^2+bc+ca}\le\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)

Tương tự: \(\frac{bc}{b^2+ca+ab}\le\frac{bc\left(c^2+ca+ab\right)}{\left(ab+bc+ca\right)^2}\) ; \(\frac{ac}{c^2+ab+bc}\le\frac{ac\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)

Cộng vế với vế:

\(VT\le\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}\)

\(VT\le\frac{ab^3+bc^3+ca^3+2.a\sqrt{ab}.c\sqrt{ab}+2a\sqrt{bc}.b\sqrt{bc}+2c\sqrt{ac}.b\sqrt{ac}}{\left(ab+bc+ca\right)^2}\)

\(VT\le\frac{ab^3+bc^3+ca^3+a^3b+abc^2+b^3c+a^2bc+ac^3+ab^2c}{\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}{\left(ab+bc+ca\right)^2}\)

\(VT\le\frac{a^2+b^2+c^2}{ab+bc+ca}\)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (0)
Kiệt Nguyễn
10 tháng 11 2020 lúc 12:14

Áp dụng bất đẳng thức Bunyakovsky, ta được: \(\Sigma_{cyc}\frac{ab}{a^2+bc+ca}=\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)}\le\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)

Ta có: \(\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}=\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}=\frac{ab^3+bc^3+ca^3+2.a\sqrt{ab}.c\sqrt{ab}+2.a\sqrt{bc}.b\sqrt{bc}+2.c\sqrt{ca}.b\sqrt{ca}}{\left(ab+bc+ca\right)^2}\le\frac{ab^3+bc^3+ca^3+a^3b+abc^2+a^2bc+b^3c+c^3a+ab^2c}{\left(ab+bc+ca\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{\left(ab+bc+ca\right)^2}=\frac{a^2+b^2+c^2}{ab+bc+ca}\)

Đẳng thức xảy ra khi a = b = c

Bình luận (0)
 Khách vãng lai đã xóa