cmr với mọi số nguyên dương n thì n^5-n chia hết cho 5
cmr: Với mọi số nguyên dương thì:
5^n.(5^n+1) - 6^n .(3^n +2^n) chia hết cho 91
kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh
CMR với mọi số nguyên dương n đều có
5^n(5^n+1)-6^n(3^n+2^n) chia hết cho 91
Ta có: 91 = 7.13 mà ƯCLN(7 ; 13) = 1 nên ta cần chứng minh A chia hết cho 7 và chia hết cho 13.
Đặt A = (25n – 18n) – (12n – 5n)
Vì (25n – 18n)(25 – 18)= 7 ; (12n – 5n) (12 – 5) = 7 nên A chia hết cho 7
A = (25n – 12n) – (18n – 5n)
Vì (25n – 12n)(25 – 12)= 13 ; (18n – 5n) (18 – 5) = 13 nên A chia hết cho 13
A vừa chia hết cho 7, vừa chia hết cho 13, mà (7 ; 13) = 1
Nên A chia hết cho BCNN(7 ; 13) hay A chia hết cho 91
CMR với mọi số nguyên dương n đều có
5^n(5^n+1)-6^n(3^n+2^n) chia hết cho 91
chứng minh rằng với mọi số n nguyên dương đều có A=5^n(5^n+10-6^n(3^n+2^n) chia hết cho 91
CMR nếu p là một số nguyên tố thì n^p - n chia hết cho p với mọi số nguyên dương n
Chứng minh rằng với mọi số nguyên dương n thì : n5-n chia hết cho 5
Theo định lí Fecma nhỏ,ta có:\(n^5-n\equiv0\left(mod5\right)\)
Do vậy \(n^5-n⋮5^{\left(đpcm\right)}\)
~ Học tốt nha bạn~
Theo định lí Fecma nhỏ, ta có :
n5 - n = 0 ( mod5 )
Do vậy : n5 - n \(⋮\)5 ( đpcm )
CMR với mọi số nguyên dương n thì (n+1)(n+2)(n+3).....(2n) chia hết cho 2^n
Mọi người tk mình đi mình đang bị âm nè!!!!!!
Ai tk mình mình tk lại nha !!!
Cmr: với mọi số nguyên n thì :
a) n^3-n chia hết cho 3
b) n^5-n chia hết cho 5
c) n^7-n chia hết cho 7
a) \(n^3-n\)
\(=n\left(n^2-1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\)
vì đó là tích của ba số tự nhiên liên tiếp nên chia hết cho 3
2 câu sau tương tự nhen
chứng minh rằng với mọi số nguyên dương n thì n5 - n chia hết cho 5
\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Do \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích 5 số nguyên liên tiếp nên chia hết cho 5 và \(5n\left(n-1\right)\left(n+1\right)⋮5\forall n\in Z^+\)
\(\Rightarrow n^5-n⋮5\forall n\in Z^+\)
CMR: 8n+2- 5n+2+8n-5n chia hết cho 65 và 120 với mọi số n nguyên dương
CMR: Với mọi số nguyên dương n thì (n+1)(n+2)(n+3).....(2n) chia hết cho 2n
với n = 1 có : ( 1 + 1 ) chia hết cho 2
giả sử, với n = k thì ( k + 1 ) ( k + 2 ) ... 2k \(⋮\)2k
cần chứng minh đúng với n = k + 1
tức là ( k + 1 + 1 ) ( k + 1 + 2 ) ... 2 (k + 1 ) \(⋮\)2k+1
Ta có : ( k + 1 + 1 ) ( k + 1 + 2 ) ... 2 (k + 1 ) = ( k + 2 ) ( k + 3 ) ... 2k .2 ( k + 1 )
= 2 ( k + 1 ) ( k + 2 ) ... 2k \(⋮\)2.2k = 2k+1
vậy ta có đpcm