Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dũng Nguyễn Xuân
Xem chi tiết
Vũ Diệu Linh
Xem chi tiết
Kỳ anh
Xem chi tiết
Lăng Thiên Tuyết
29 tháng 10 2015 lúc 10:11

bạn vào link này để xem lời giải nha http://olm.vn/hoi-dap/question/255658.html

Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 12 2021 lúc 8:22

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\\\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\end{matrix}\right.\\ \RightarrowĐpcm\)

nguyen the bao
Xem chi tiết
Nguyễn Ngọc Anh Minh
19 tháng 10 2021 lúc 10:02

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{a}{b}=\frac{c}{d}.\frac{a}{b}\Rightarrow\frac{ac}{bd}=\frac{a^2}{b^2}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{c}{d}.\frac{c}{d}\Rightarrow\frac{ac}{bd}=\frac{c^2}{d^2}\)

\(\Rightarrow\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\left(dpcm\right)\)

Khách vãng lai đã xóa
Trần Thị Hảo
Xem chi tiết
Đỗ Thị Huyền Trang
11 tháng 12 2017 lúc 20:30

ta có :

\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) \(\Rightarrow\) \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)

đặt \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\) = k \(\Rightarrow\) a = ck ; b = dk

\(\dfrac{ac}{bd}\) = \(\dfrac{ck.c}{dk.d}\) = \(\dfrac{c^2.k}{d^2.k}\) = \(\dfrac{c^2}{d^2}\) (1)

\(\dfrac{a^2+c^2}{b^2+d^2}\) = \(\dfrac{\left(ck\right)^2+c^2}{\left(dk\right)^2+d^2}\) = \(\dfrac{c^2.k^2+c^2}{d^2.k^2+d^2}\) = \(\dfrac{c^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}\) = \(\dfrac{c^2}{d^2}\)(2)

từ (1) , (2) \(\Rightarrow\) \(\dfrac{ac}{bd}\) = \(\dfrac{a^2+c^2}{b^2+d^2}\)

Rosie
Xem chi tiết
Akai Haruma
28 tháng 1 2023 lúc 12:28

Với $a=1; b=5; c=4; d=3$ thì BĐT sai. Bạn xem lại đề.

Nguyễn Tất Thành
Xem chi tiết
Nguyễn Minh Hoàng
Xem chi tiết
zZz Cool Kid_new zZz
21 tháng 2 2019 lúc 20:19

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}.Đặt:a=ck;b=dk\)

\(\Rightarrow\frac{a^2+ac}{c^2-ac}=\frac{c^2k^2+c^2k}{c^2-kc^2}=\frac{c^2\left(k^2+k\right)}{c^2\left(1-k\right)}=\frac{k^2+k}{1-k}\)

\(\frac{b^2+bd}{d^2-bd}=\frac{d^2k^2+kd^2}{d^2-kd^2}=\frac{d^2\left(k^2+k\right)}{d^2\left(1-k\right)}=\frac{k^2+k}{1-k}\)

\(\Rightarrow\frac{b^2+bd}{d^2-bd}=\frac{a^2+ac}{c^2-ac}\left(\text{đpcm}\right)\)

Nguyễn Mạnh Tân
21 tháng 2 2019 lúc 20:19

Ta có \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)

 \(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\Leftrightarrow ad\left(a+c\right)\left(d-b\right)=bc\left(b+d\right)\left(c-a\right)\)

Rút gọn ad với bc \(\Rightarrow\left(a+c\right)\left(d-b\right)=\left(b+d\right)\left(c-a\right)\)

\(\Leftrightarrow ad+cd-ab-bc=bc+cd-ab-ad\)

Rút gọn 2 vế ta đc 0=0 

vì 0=0 luôn đúng nên cái phương trình trên luôn đúng