tam giác ABC cân tại A , phân giác góc A cắt BC tại M . kẻ ME vuông góc với AB tại E , MF vuông góc với AC tại F
a. cmr ME=MF
b. QUA B vẽ đường thẳng song song với AC cắt FM tại I . chứng minh rằng BE= BI
c. cmr góc FEI =90 độ
Cho ∆ABC cân tại A. Tia phân giác góc BAC cắt cạnh BC tại M.
a)Kẻ ME vuông góc với AB .Kẻ MF vuông góc với AC .Chứng minh ∆AEF cân.
b)Chứng minh AM vuông góc với EF.
c)Qua B kẻ đường thẳng song song với AC cắt đường thẳng FM tại I. Chứng minh BE=BI.
Vẽ hình nha
a) _ Xét tam giác AME và tam giác AMF có :
E = F ( = 90 độ)
AM là cạnh huyền chung
A1=A2 ( AM là tia phân giác của BAC)
suy ra : tam giác AME = tam giác AMF ( CH-GN)
suy ra AE = AF ( 2 cạnh tương ứng)
suy ra tam giác AEF cân tại A
vẽ hình tạm nha
~ chúc bn học tốt~
Cho tam giác ABC cân tại A . Tia phân giác BAC cắt cạnh BC tại M
a) Chứng minh tam giác AMB và tam giác AMC
b) Kẻ ME vuông góc với AB (E thuộc AB) , kẻ MF vuông góc với AC (F thuộc AC).CM : tam giác AEF
c) CM : AM vuông góc EF
d) Qua B kẻ đường thẳng song song với AC cắt đường thẳng FM tại I . CM : BE = BI
Vẽ hình nữa nhé
Cho tam giác ABC cân tại A. Tia phân giác góc BAC cắt cạnh BC tại M
a) Chứng minh ∆ A M B = ∆ A M C .
b) Kẻ M E ⊥ A B ( E ∈ A B ) , M F ⊥ A C ( F ∈ A C ) . Chứng minh tam giác AEF cân.
c) Chứng minh A M ⊥ E F .
d) Qua B kẻ đường thẳng song song với AC cắt đường thẳng FM tại I Chứng minh BE = BI
Cho tam giác ABC có AB=AC. Tia phân giác góc BAC cắt BC tại M.
a) Chứng minh tam giác AMB= tam giác AMC
b)Kẻ ME vuông góc AB, MF vuông góc AC. Chứng minh ME=MF
c) Chứng minh AM vuống góc EF
d) Qua B vẽ đường thẳng song song với AC cắt FM tại I. Chứng minh BE=BI
Cho tam giác ABC có AB AC. Tia phân giác góc BAC cắt BC tại M.a Chứng minh tam giác AMB tam giác AMCb Kẻ ME vuông góc AB, MF vuông góc AC. Chứng minh ME MFc Chứng minh AM vuống góc EFd Qua B vẽ đường thẳng song song với AC cắt FM tại I. Chứng minh BE BI
Cậu ghi rõ ràng hơn chút được không ạ . Cậu ghi AB AC ; BE BI mình không hiểu đc
cho tam giác abc có ab=ac.phân giác am . a)chứng minh rằng tam giác amb=tam giác amc. b)kẻ me vuông góc với ab , mf vuông góc với ac chứng minh me=mf . c)qua b kẻ đường thẳng song song với ac cắt fm tại i chứng minh be=bi . d) chứng minh me=1/2 if
a) Xét tam giác AMB và tam giác AMC ta có:
AM là cạnh chung
AB = AC (gt)
góc BAM = góc CAM ( AM là tia phân giác của góc BAC)
=> tam giác AMB = tam giác AMC ( c - g - c)
b) Xét tam giác AEM vuông tại E và tam giác AFM vuông tại F ta có:
AM là cạnh chung
góc EAM = góc FAM ( AM là tia p/g của góc BAC)
=> tam giác AEM = tam giác AFM ( ch - gn)
=> ME = MF ( 2 cạnh tương ứng)
c) Ta có:
BI // AC (gt)
IF _|_ AC tại F (gt)
=> FI _|_ BI tại I
Ta có:
góc EBM = góc FCM ( tam giác AMB = tam giác AMC)
góc IBM = góc FCM ( 2 góc so le trong và BI // AC)
=> góc EBM = góc IBM
Xét tam giác EBM vuông tại E và tam giác IBM vuông tại I ta có:
BM là cạnh chung
góc EBM = góc IBM (cmt)
=> tam giác EBM = tam giác IBM ( ch - gn)
=> BE = BI ( 2 cạnh tương ứng)
d) Ta có:
ME = MF ( tam giác AEM = tam giác ÀM)
ME = MB ( tam giác EBM = tam giác IBM)
=> MF = MB
=> M là trung điểm của BF ( M thuộc BF)
=> MB = 1/2 IF
Mà ME = MB ( cmt)
Nên ME = 1/2 IF ( đpcm)
Cho tam giác ABC cân tại A, lấy M là trung điểm của BC.
a) Chứng minh AM vuông góc với BC.
b) Kẻ ME vuông góc với AB tại E, MF vuông góc với AC tại F. Chứng minh rằng ME = MF
c) Chứng minh EF song song với BC.
d) Tia EM cắt AC tại K, tia FM cắt AB tại H. Tìm điều kiện để tam giác AHK là tam giác đều.
a) M là trung điểm của BC
=> BM=CM
tam giác ABC cân tại A
=> AB=AC
xét tam giác ABM và tam giác ACM có
AB=AC
BM=CM
cạnh AM chung
do đó : tam giác ABM= tam giác ACM ( c.c.c)
b) do tam giác ABM = tam giác ACM
=> góc A1 = góc A2
xét tam giác AEM và tam giác AFM có
cạnh AM chung
góc A1= góc A2
góc AEM=góc AFM =90 độ
do đó tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn)
c) gọi N là giao của AM va EF
do tam giác AEM= tam giác AFM
=> AE=AF
xét tam giác AEN và tam giác AFN có
cạnh AN chung
góc A1 = góc A2
AE=AF
do đó tam giác AEN=tam giác AFN ( c.g.c)
=> góc N1=góc N2
mà góc N1 + góc N2 = 180 độ ( kề bù)
=> góc N1= góc N2=90 độ
=> AN vuông góc EF
hay AM vuông góc EF
d) Qua F kẻ đg thẳng // với CE cắt AM tại H
+ HF là đg trung bình của ΔACI
⇒HF=\(\frac{1}{2}\)CI
+ ΔABM cân tại M
=> đg cao ME đồng thới là đg trung tuyến
=> AE = BE
+ Tương tự : AF = CF
+ EF là đg trung bình của ΔABC
=> EF // BC
+ Tứ giác EFCM là hbh
=> MK = FK
+ HF // CE => HF // IK
+ IK là đg trung bình của ΔMHF
\(\Rightarrow IK=\frac{1}{2}HF\Rightarrow CI=4IK\)
⇒IK=12HF⇒CI=4IK
a) M là trung điểm của BC
=> BM=CM
tam giác ABC cân tại A
=> AB=AC
xét tam giác ABM và tam giác ACM có
AB=AC
BM=CM
cạnh AM chung
do đó : tam giác ABM= tam giác ACM ( c.c.c)
b) do tam giác ABM = tam giác ACM
=> góc A1 = góc A2
xét tam giác AEM và tam giác AFM có
cạnh AM chung
góc A1= góc A2
góc AEM=góc AFM =90 độ
do đó tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn)
c) gọi N là giao của AM va EF
do tam giác AEM= tam giác AFM
=> AE=AF
xét tam giác AEN và tam giác AFN có
cạnh AN chung
góc A1 = góc A2
AE=AF
do đó tam giác AEN=tam giác AFN ( c.g.c)
=> góc N1=góc N2
mà góc N1 + góc N2 = 180 độ ( kề bù)
=> góc N1= góc N2=90 độ
=> AN vuông góc EF
hay AM vuông góc EF
hok tốt!
Đề bài: Cho △ABC cân tại A. Tia phân giác góc BAC cắt cạnh BC tại M.
a) Chứng minh: △AMB = △AMC
b) Kẻ ME vuông góc AB ( E ϵ AB ), MF vuông góc AC ( F ϵ AC ). Chứng minh △AEF cân
c) Chứng minh: AM vuông góc EF
d) Qua B kẻ đường thẳng song song với AC cắt đường thẳng FM tại I. Chứng minh: BE = BI
a) Xét \(\Delta ABM\) và \(\Delta ACM\) có:
\(AB=AC\) (do \(\Delta ABC\) cân tại \(A\))
\(\widehat{BAM}=\widehat{CAM}\) (do \(AM\) là tia phân giác \(\widehat{A}\))
\(AM\) là cạnh chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.g.c\right)\)
b) Xét \(\Delta AEM\left(\widehat{AEM}=90^o\right)\) và \(\Delta AFM\left(\widehat{AFM}=90^o\right)\) có:
\(\widehat{EAM}=\widehat{FAM}\) (do \(AM\) là tia phân giác \(\widehat{A}\))
\(AM\) là cạnh chung
\(\Rightarrow\Delta AEM=\Delta AFM\left(ch.gn\right)\)
\(\Rightarrow AE=AF\) (\(2\) cạnh tương ứng)
\(\Rightarrow\Delta AEF\) cân tại \(A\)
c) Xét \(\Delta AEF\) cân tại \(A\) có \(AM\) là đường phân giác \(\widehat{A}\)
\(\Rightarrow AM\) cũng là đường trung trực \(\Delta AEF\)
\(\Rightarrow AM\perp EF\)
Tự vẽ hình
a, Tam giác AMB và tam giác AMC
AB = AC ( Tam giáC ABc cân )'
góc BAM = góc CAM ( AM là phân giác)
AM chung
=> Tam giác AMB = tam giác AMC ( c-g-c)
b, Xét tam giá AEM và tam giác AFM cs
góc AEM = góc AFM = 90 độ ( gt )
góc EAM = góc FAM ( AM là phân giác)
AM chung
=>tam giá AEM = tam giác AFM ( ch-gn)
=> AE = AF hay tam giác AEF cân tại A
c, Xét tam giác AEF cân tại A cs AM là tia phân giác đồng thời là đg cao
=> AM vuông góc vs EF
d, Tam giác ABC cân tại A
=> góc ABC = góc ACB
Ta có Tam giác ABC cân tại A
mà AM là tia phân giác đồng thời là trung tuyến
=> MB = MC
do BI // vs AC mà IE⊥ AC
=> BI ⊥ IE hay góc MIB = 90 độ
Xét tam giác MIB và tam giác MFC cs
góc F = góc M = 90 độ
MB = MC ( cmt)
góc BMI = góc FMC ( đối đỉnh)
=> tam giác MIB = tam giác MFC ( ch-gn)
=> góc MBI = góc MCF
mà góc MCF = góc ABC ( cmt)
=> góc MBI = góc ABC
Xét tam giác MEB và tam giác MIB cs
góc MBI = góc EBM(cmt)
góc E = góc M = 90 độ
BM chung
=> tam giác MEB = tam giác MIB ( ch-gn)
=> BE = BI
Bài 3 Cho tam giác ABC vuông tại A,M là trung điểm của BC. Qua M kẻ ME vuông góc với AB tại E, kẻ MF vuông góc với AC tại F.
a) Tứ giác AEMF là hình gì? Vì sao?
b) Đường thẳng qua A song song với BC cắt đường thảng qua C song song AB tại N. Chứng minh rằng M, F, N thẳng hàng