Đường tròn (A;2cm) và đường tròn (B;2cm) cắt nhau tại hai điểm C;D. Khi đó đường tròn (C;2cm) đi qua điểm nào dưới đây?
A.Điểm A
B.
Điểm B
C.
Cả điểm A và điểm B
D.
Không đi qua điểm nào trong ba điểm A;B;D
Cho nửa đường tròn(O), đường kính CD. Qua 1 điểm M trên nửa đường tròn đó vẽ tiếp tuyến xy với nửa đường tròn. Kẻ CB vuông góc với xy tại B, kẻ DA vuông góc với xy tại A. Chứng minh CD là tiếp tuyến của đường tròn đường kính AB
trên CD lấy điểm N, kẻ MN vuông góc với CD
=> 2 tam giac vuông MBC=MNC
=> 2tam giác MAD=MND
=> MB=MN=MA = R
vậy CD là tiếp tuyến đường tròn tâm M
cho đường tròn (O) đường kính AB, một điểm M di động trên đường tròn. Gọi N là điểm đối xứng với A qua M; P là giao điểm thứ 2 của BN với đường tròn (O); Q,R là giao điểm của đường thẳng BM lần lượt với AP và với tiếp tuyến tai A của đường tròn(O).
a) chứng minh N luôn luôn trên 1 đường tròn cố định tiếp xúc với đường tròn (O). Gọi đó là đường tròn (C)
b) chứng minh RN là tiếp tuyến của đường tròn (C)
c) tứ giác ARNQ là hình gì?
không cần vẽ hình nha mn
làm giúp mình với. ai có làm là mình tick đúng cho
làm ơn!!!
a) Vì \(A,M,B\in\left(O\right)\); AB là đường kính
\(\Rightarrow\widehat{AMB}=90^0\)
\(\Rightarrow AM\perp MB\)
Xét tam giác ANB có: BM vừa là đường cao vừa là đường trung bình
\(\Rightarrow\Delta ANB\)cân tại B
\(\Rightarrow NB=BA\)
\(\Rightarrow N\in\left(C;\frac{BA}{2}\right)\)cố định
b) Vì BM là đường cao của tam giác ABN cân tại B
=> BM là phân giác góc ABN
=> góc ABM= góc NBM
Xét tam giác ARB và tam giác NRB có:
\(\hept{\begin{cases}BRchung\\\widehat{ABM}=\widehat{NBM}\left(cmt\right)\\AB=NB\end{cases}\Rightarrow\Delta ARB=\Delta NRB\left(c-g-c\right)}\)
\(\Rightarrow\widehat{RAB}=\widehat{RNB}=90^0\)
\(\Rightarrow RN\perp BN\)
\(\Rightarrow RN\)là tiếp tuyến của (C)
c) Ta có: A,P,B thuộc (O); AB là đường kính
\(\Rightarrow\widehat{APB}=90^0\)
\(\Rightarrow AP\perp BP\)
\(\Rightarrow RN//AP\)( cùng vuông góc với NB )
Xét tam giác NAB có: \(\hept{\begin{cases}MB\perp AN\\AP\perp BN\end{cases}}\); AP cắt BM tại Q
\(\Rightarrow Q\)là trực tâm tam giác NAB
\(\Rightarrow NQ\perp AB\)
=> NQ // AR( cùng vuông góc với AB)
Xét tứ giác ARNQ có:
\(\hept{\begin{cases}AR//NQ\left(cmt\right)\\RN//AP\left(cmt\right)\end{cases}\Rightarrow ARNQ}\)là hình bình hành
Mà 2 đường chéo RQ và AN vuông góc với nhau
=> ARNQ là hình thoi
Cho hình bình hành ABCD có góc A nhỏ hơn 90 Đường tròn (A;AB) cắt đường thẳng BC tại E Đường tròn (C;CB) cắt đường thẳng AB tại K.CM
a) DE=DK
b)A,D,C,K,E cùng thuộc 1 đường tròn
thôi t tự giải đc rồi ko cần trả lời đâu
Cho tam giác ABC vuông tại A, điểm D nằm giữa A và C. Vẽ đường tròn tâm O, đường kính DC. Đường tròn tâm O cắt BC ở E. Nối BD cắt đường tròn tâm O ở F
a) C/m A,B,C,F cùng thuộc một đường tròn
b) C/m 3 đường thẳng AB.CF,ED đồng quy tại K
c) C/m KA.KB=KF.KC
d) Cho Ab = 2cm; AC = 4cm. C/m tan KFA = 2
Cho đường tròn tâm O đường kính AB và một điểm C trên đường tròn. Từ O kẻ một đường thẳng song song với dây AC , đường thẳng này ćt tiếp tuyến tại B của đường tròn tại điểm D.
a) Chứng minh OD là phân giác của góc BOC
b) Chứng minh CD là tiếp tuyến của đường tròn
CM ko thể vẽ được quá 6 đường tròn đi qua điểm A cho trước sao cho tâm mỗi đường tròn không nằm trong các đường tròn còn lại
help me ai lm đc tặng 10 k
Vẽ tam giác ABC có AB= 2cm , BC =3cm , CA=4cm và đường tròn (A;2cm).
a. Trong các điểm A,B,C điểm nào nằm bên trong ,nằm bên ngoài , nằm trên đường tròn (A;2cm)?
b. Chứng tỏ rằng tâm của đường tròn đường kính AC nằm trên đường tròn (A;2cm)
cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A; AH) kẻ tiếp tuyến BD, CE với đường tròn ( D, E là các tiêp tuyến khác H ). chứng minh rằng:
a/ Ba điểm D, A, E thẳng hàng.
b/ DE tiếp xúc với đường tròn có đường kính BC
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A; AH) kẻ tiếp tuyến BD, CE với đường tròn ( D,E là các tiếp điểm khác H) chứng minh:
a/ Ba điểm D, A, E thẳng hàng.
b/ DE tiếp xúc với đường tròn có đường kính BC.
ta có góc DAB=BAH( tính chất 2 tt cn) và HAC=EAC (----------------)\
Mà góc BAH +HAC =90o => DAB+EAC=90o TA có DAB+EAC+BAH+HAC =DAE
=>90o +90o=DAE hay DAE =180o mặt khác D,A,E thẳng hàng
CÒN phần b thì chưa làm
a) Theo tính chất hai tiếp tuyến cắt nhau ta có:
AB là tia phân giác của góc HAD
Suy ra:
ˆ
D
A
B
=
ˆ
B
A
H
DAB^=BAH^
AC là tia phân giác của góc HAE
Suy ra:
ˆ
H
A
C
=
ˆ
C
A
E
HAC^=CAE^
Ta có:
ˆ
H
A
D
+
ˆ
H
A
E
=
2
(
ˆ
B
A
H
+
ˆ
H
A
C
)
=
2.
ˆ
B
A
C
=
2.90
∘
=
180
∘
HAD^+HAE^=2(BAH^+HAC^)=2.BAC^=2.90∘=180∘
Vậy ba điểm D, A, E thẳng hàng.
b) Gọi M là trung điểm của BC
Theo tính chất của tiếp tuyến, ta có:
A
D
⊥
B
D
;
A
E
⊥
C
E
AD⊥BD;AE⊥CE
Suy ra: BD // CE
Vậy tứ giác BDEC là hình thang
Khi đó MA là đường trung bình của hình thang BDEC
Suy ra:
M
A
/
/
B
D
⇒
M
A
⊥
D
E
MA//BD⇒MA⊥DE
Trong tam giác vuông ABC ta có: MA = MB = MC
Suy ra M là tâm đường tròn đường kính BC với MA là bán kính
Vậy DE là tiếp tuyến của đường tròn tâm M đường kính BC.
cho tam giác ABC vuông tại A, đường cao AH, vẽ đường tròn (A;AH). Kẻ tiếp tuyến BD,CE với đường tròn ( D, E là các tiếp điểm khác H) chứng minh rằng:
a/ Ba điểm D, A, E, thẳng hàng.
b/ DE tiếp xúc với đường tròn có đường kính BC.