Cho tam giác ABC vuông tại A, đường cao AH(H thuộc BC).Đường tròn đường kính AH cắt AB, AC lần lượt tại E, F. Chứng minh rằng: EF^3=BE.CF.BC.
Cho tam giác ABC vuông tại A. Đường cao AH (H thuộc BC). Đường tròn đường kính AH cắt AB, AC lần lượt tại E và F. Chứng minh EF^3=EB.BC.CF
Cho tam giác ABC vuông tại A. Đường cao AH (H thuộc BC). Đường tròn đường kính AH cắt AB, AC lần lượt tại E và F. Chứng minh EF^3=EB.BC.CF
cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Đường tròn đường kính BH và đường tròn đường kính HC cắt AB, AC lần lượt tại P, Q. Chứng minh rằng (AB/AC)^3 = BP/CQ
Cho tam giác ABC vuông tai A, đường cao AH . Đường tròn đường kính AH cắt các cạnh AB, AC lần lượt tại E và F.
1. Chứng minh tứ giác AEHF là hình chữ nhật;
2. Chứng minh AE.AB = AF. AC;
3.Đường rhẳng qua A vuông góc với EF cắt cạnh BC tại I. Chứng minh I là trung điểm của đoạn BC;
4. Chứng minh rằng nếu diện tích tam giác ABC gấp đôi diện tích hình chữ nhật AEHF thì tam giác ABC vuông cân.
Cho tam giác ABC vuông tai A, đường cao AH . Đường tròn đường kính AH cắt các cạnh AB, AC lần lượt tại E và F.
1. Chứng minh tứ giác AEHF là hình chữ nhật;
2. Chứng minh AE.AB = AF. AC;
3.Đường rhẳng qua A vuông góc với EF cắt cạnh BC tại I. Chứng minh I là trung điểm của đoạn BC;
4. Chứng minh rằng nếu diện tích tam giác ABC gấp đôi diện tích hình chữ nhật AEHF thì tam giác ABC vuông cân.
Cho tam giác ABC có đường cao AH (H thuộc BC). Gọi E, F lần lượt là trung điểm của AB, AC
a) Chứng minh AH ^ EF.
b) EF cắt AH tại K. Chứng minh KA = KH.
a: Ta có: ΔAHB vuông tại H
mà HE là đường trung tuyến ứng với cạnh huyền AB
nên HE=AE
hay E nằm trên đường trung trực của AH(1)
Ta có: ΔAHC vuông tại H
mà HF là đường trung tuyến ứng với cạnh huyền AC
nên HF=FA
hay F nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra FE là đường trung trực của AH
hay FE\(\perp\)AH
Cho tam giác ABC nội tiếp đường tròn (O) đường kính BC. Kẻ đường cao AH của tam giác ABC. Biết BC=20cm, AH/AC= 3/4
1. Tính AB và AC
2. Đường tròn đường kính AH cắt (O), AB, AC lần lượt tại M,D,E. DE cắt BC tại K. Chứng minh: A,M,K thẳng hàng
3. Chứng minh: B, D, E, C cùng thuộc một đường tròn
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm O đường kính AH, đường tròn này cắt AB, AC lần lượt tại E và F. Gọi K là trung điểm của HC, đường vuông góc với EC tại C cắt FK tại P. Chứng minh rằng: BP song song với AC