Tìm \(x\),\(y\inℤ\) biết \(y=\frac{5x+3}{x\left(y^2+1\right)+y\left(x^2+1\right)+x^2+y^2+2xy}\)
Tìm \(x\),\(y\inℤ\) biết \(y=\frac{5x+3}{x\left(y^2+1\right)+y\left(x^2+1\right)+x^2+y^2+2xy}\)
Bài 1
\(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{x.\left(x+1\right)}=\frac{49}{50}\)
\(\frac{2x+3}{x-1}\)có giá trị là số nguyên \(\left(x\inℤ,x\ne0\right)\)
\(\frac{x-4}{y-3}=\frac{4}{3}\)và \(x-y=5\)\(\left(y\ne3\right)\)
Tìm x,y nguyên dương để: \(\frac{1}{x}+\frac{y}{2}=\frac{5}{8}\)
\(\left(x+3\right)^2+\left(y-1\right)^2< 4\left(x;y\inℤ\right)\)
\(\left(x+3\right)^2.\left(y-3\right)=-4\left(x;y\inℤ\right)\)
đổi k ko,mk hứa sẽ k lại(nếu ko làm chó!!!!!!!!!!!!!)
Bài 1: <Cho là câu a đi>:
a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\)
\(\rightarrow x+1=50\rightarrow x=49\)
Vậy x = 49.
Tìm x, y nguyên dương để : \(\frac{1}{x}+\frac{y}{2}=\frac{5}{8}\)
Ta có : \(\frac{1}{x}+\frac{y}{2}=\frac{5}{8}\) => \(\frac{5}{8}-\frac{y}{2}=\frac{1}{x}\)
=> \(\frac{5-4y}{8}=\frac{1}{x}\) => \(\left(5-4y\right)x=8\)
=> 5 - 4y; x là ước của 8
Ta có bảng :
5 - 4y | 1 | 2 | 4 | 8 |
x | 8 | 4 | 2 | 1 |
y | 1 | 3/4 | 1/4 | -3/4 |
Vì x,y nguyên dương => x = 8 ; y = 1
Vậy x = 8; y = 1 là 2 giá trị cần tìm
Study well ! >_<
giải hệ:
a) \(\left\{{}\begin{matrix}\sqrt{x+3y}+\sqrt{x+y}=2\\\sqrt{x+y}+y-x=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\left(x-\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=2\\2x^2y+xy^2-4xy=2x-y\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}2x^2+xy=y^2-3y+2\\x^2-y^2=3\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}x^2+y^2+z^2+2xy-xz-zy=3\\x^2+y^2-2xy-xz+zy=-1\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}x^2-y^2+5x-y+6=0\\x^2+\left(x-y\right)^2=2+\sqrt{6x+7}+2\sqrt{x+y+1}\end{matrix}\right.\)
giải hệ phương trình
1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)
3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)
4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)
6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)
7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)
8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)
9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)
giải hệ phương trình
a) \(\left\{{}\begin{matrix}\sqrt{2x^2+2y^2}+\sqrt{\frac{4}{3}\left(x^2+xy+y^2\right)}=2\left(x+y\right)\\\sqrt{3x+1}+\sqrt{5x+4}=3xy-y+3\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\\\sqrt{x+2y+1}+2\sqrt[3]{12x+7y+8}=2xy+x+5\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x^2+xy+x+3=0\\\left(x+1\right)^2+3\left(y+1\right)+2\left(xy-\sqrt{x^2y+2y}\right)=0\end{matrix}\right.\)
b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)
\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)
\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)
\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)
\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)
caau a) binh phuong len ra no x=y tuong tu
c)
ĐK $y \geqslant 0$
Hệ đã cho tương đương với
$\left\{\begin{matrix} 2x^2+2xy+2x+6=0\\ (x+1)^2+3(y+1)+2xy=2\sqrt{y(x^2+2)} \end{matrix}\right.$
Trừ từng vế $2$ phương trình ta được
$x^2+2+2\sqrt{y(x^2+2)}-3y=0$
$\Leftrightarrow (\sqrt{x^2+2}-\sqrt{y})(\sqrt{x^2+2}+3\sqrt{y})=0$
$\Leftrightarrow x^2+2=y$
Bài 1: Tính giá trị biểu thức:
\(A=5x\left(x-4y\right)-4y\left(y-5x\right)\) với \(x=-\frac{1}{5};y=-\frac{1}{2}\)
\(B=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)+5y^2\left(x^2-xy\right)\)
Với x = \(\frac{1}{2}\); y = 2
Bài 2: Chứng minh rằng:
a) \(\left(4x^2-2xy+y^2\right)\left(2x+y\right)=8x^3+y^3\)
b) \(\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)=x^7+x^5+1\)
\(Cho:\)x ; y ; z là các số khác nhau đôi một \(\left(x\ne y\right);\left(y\ne z\right);\left(x\ne z\right)\)sao cho : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Tính các tổng sau : \(1.A=\frac{\left(yz-3\right)}{x^2+2yz}+\frac{\left(xz-3\right)}{y^2+2xz}+\frac{\left(xy-3\right)}{z^2+2xy}\)
\(2.B=\frac{\left(x^2-2yz\right)}{x^2+2yz}+\frac{\left(y^2-2xz\right)}{y^2+2xz}+\frac{\left(x^2-2xy\right)}{x^2+2xy}\)
Hướng dẫn :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)
Thay vào:\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-zx=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)
Tương tự thay vào mà quy đồng
a) Tìm x biết : \(\left(x+7\right)^2-x\left(x-3\right)=12\)
b) Cm : \(x^2=\frac{x^2+y^2-1+2xy}{x^2-y^2+1+2x}=\frac{x+y-1}{x-y+1}\)
a) \(\left(x+7\right)^2-x\left(x-3\right)=12\)
\(\Leftrightarrow x^2+14x+49-x^2+3x=12\)
\(\Leftrightarrow17x=-37\)
\(\Leftrightarrow x=-\frac{37}{17}\)
Bài 1: Tìm x,y:
a) |x - 1| + |x + 3| = 4
b) |2x + 3| + |2x - 1| = \(\frac{8}{2\left(y-5\right)^2+2}\)
c) |x + 3| + |x + 1| = \(\frac{16}{\left|y-2\right|+\left|y+2\right|}\)
Bài 2: Tìm số nguyên x,y, biết:
a) \(\frac{1}{x}+\frac{1}{y}=\frac{1}{5}\)
b) \(x^2-2xy+y=0\)
a)Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-1\right|+\left|3+x\right|=\left|1-x\right|+\left|3+x\right|\ge\left|1-x+3+x\right|=4\)
\(\Rightarrow VT\ge VP."="\Leftrightarrow-3\le x\le1\)
b) \(\hept{\begin{cases}\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge4\\\frac{8}{2\left(y-5\right)^2+2}\le4\end{cases}}\Leftrightarrow VT\ge VP."="\Leftrightarrow\hept{\begin{cases}-\frac{3}{2}\le x\le\frac{1}{2}\\y=5\end{cases}}\)
c Tương tự b
2) \(\frac{1}{x}+\frac{1}{y}=5\Leftrightarrow x+y-5xy=0\Leftrightarrow5x+5y-25xy=0\Leftrightarrow5x\left(1-5y\right)-\left(1-5y\right)=-1\)
\(\Leftrightarrow\left(5x-1\right)\left(1-5y\right)=-1\)
Xét ước