\(cho\frac{xy}{x^2y^2}=\frac{5}{8}tínhgiátrịA=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}\)
Cho \(\frac{xy}{x^2+y^2}=\frac{5}{8}\)
Ruts gonj \(P=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}\)
\(\frac{xy}{x^2+y^2}=\frac{5}{8}\)
\(\Rightarrow5\left(x^2+y^2\right)=8xy\)
Ta có : \(P=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{5\left(x^2+y^2-2xy\right)}{5\left(x^2+y^2+2xy\right)}\)
\(=\frac{5\left(x^2+y^2\right)-10xy}{5\left(x^2+y^2\right)+10xy}=\frac{8xy-10xy}{8xy+10xy}=\frac{-2xy}{18xy}=\frac{-1}{9}\)
Ta có: \(P=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{\frac{x^2+y^2-2xy}{x^2+y^2}}{\frac{x^2+y^2+2xy}{x^2+y^2}}=\frac{\frac{x^2+y^2}{x^2+y^2}-\frac{2xy}{x^2+y^2}}{\frac{x^2+y^2}{x^2+y^2}+\frac{2xy}{x^2+y^2}}\)
\(=\frac{1-\frac{2xy}{x^2+y^2}}{1+\frac{2xy}{x^2+y^2}}=\frac{1-\frac{2.5}{8}}{1+\frac{2.5}{8}}=\frac{-1}{9}\)
Vậy \(P=\frac{-1}{9}\)
\(\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2=1+\frac{2}{x}+\frac{1}{x^2}+1+\frac{2}{y}+\frac{1}{y^2}\)
\(=2+\frac{2x+1}{x^2}+\frac{2y+1}{y^2}\)\(=2+\frac{2xy^2+y^2+2x^2y+x^2}{x^2y^2}\)\(=2+\frac{2xy\left(x+y\right)+\left(x+y\right)^2-2xy}{x^2y^2}\)
thay x+y=1 vào biểu thức, ta có:
\(2+\frac{2xy+1-2xy}{x^2y^2}=2+\frac{1}{x^2y^2}=2+\left(\frac{1}{xy}\right)^2\)
vì \(\left(\frac{1}{xy}\right)^2\ge0\) nên GTNN của biểu thức là 2
cái này mình giải dùm một bạn của mình, mọi người đi qua đừng chú ý nhé
hay đó, cảm ơn luôn nha!~~ (dù ko lq :D)
phân tích
\(\left(\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}\right):\frac{x^2-2xy+y^2}{x^2y-xy^2}\)
giải hệ phương trình
1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)
3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)
4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)
6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)
7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)
8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)
9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)
Tự nghĩ
Cho xy khác + 2 . Chứng minh biểu thức sau không phụ thuộc và x,y
\(P=\left(\frac{2^3\sqrt{2xy}}{x^2y^2-^3\sqrt{4}}+\frac{xy^3\sqrt{2}}{2xy+2^3\sqrt{2}}\right).\frac{2xy}{xy+^3.\sqrt{2}}\)\(-\frac{xy}{xy-^3\sqrt{2}}\)
??????????
?????????????????
Biết \(\frac{xy}{x^2+y^2}=\frac{3}{8}\)Tính \(\frac{x^2+2xy+y^2}{x^2-2xy+y^2}\)
rút gọn biểu thức
a)\(\left(\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}\right).\frac{x^2y-xy^2}{x^2-2xy+y^2}\)
b) \(\left(\frac{x+y}{2x-2y}-\frac{x-y}{2x+2y}-\frac{2y^2}{y^2-x^2}\right):\frac{2y}{x-y}\)
giúp tui zới tuôi đang cần gấp nha mn!!
T~T ai zúp tui tick cho
Bài 2 Rút gọn
A=(\(x-\frac{4xy}{x+y}+y\)):(\(\frac{x}{x+y}-\frac{y}{x-y}-\frac{2xy}{x^2-y^2}\))
B=(\(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\)):\(\frac{x^2+4x^2y^2+y^4-4}{x^2+y+xy+x}\):\(\frac{1}{2x^2+y+2}\)
a ) \(\frac{x^4-xy^3}{2xy+y^2}:\frac{x^3+x^2y+xy^2}{2x+y}\)
\(\frac{x^4-xy^3}{2xy+y^2}:\frac{x^3+x^2y+xy^2}{2x+y}\)
\(=\frac{x\left(x^3-y^3\right)}{y\left(2x+y\right)}.\frac{2x+y}{x^3+x^2y+xy^2}\)
\(=\frac{x\left(x-y\right)\left(x^2+xy+y^2\right)\left(2x+y\right)}{xy\left(2x+y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{x-y}{y}\)
\(\frac{x^4-xy^3}{2xy+y^2}:\frac{x^3+x^2y+xy^2}{2x+y}\)
\(=\frac{x\left(x^3-y^3\right)}{y\left(2x+y\right)}:\frac{x\left(x^2+xy+y^2\right)}{2x+y}\)
\(=\frac{x\left(x-y\right)\left(x^2+xy+y^2\right)}{y\left(2x+y\right)}:\frac{x\left(x^2+xy+y^2\right)}{2x+y}\)
\(=\frac{x\left(x-y\right)\left(x^2+xy+y^2\right)}{y\left(2x+y\right)}.\frac{2x+y}{x\left(x^2+xy+y^2\right)}\)
\(=\frac{x-y}{y}\)