a, \(\frac{11x+13}{3x-3}+\frac{15x+17}{4-4x}\)
b, \(\frac{3x+5}{x^2-5x}+\frac{25-x}{25-5x}\)
xin các giáo sư giải đáp hộ (gấp) :)
Bài 1: Thực hiện phép tính
a. \(\frac{11x+10}{3x-3}+\frac{15x+13}{4-4x}\)
b. \(\frac{5x+3}{x^2-3x}+\frac{9-x}{9-3x}\)
c. \(\frac{4xy-1}{5x^2y}-\frac{2xy-1}{5x^2y}\)
d. \(\frac{x+8}{x^2-16}-\frac{2}{x^2+4x}\)
e. \(\frac{x^2-49}{2x+1}.\frac{3}{7-x}\)
f. \(\frac{3x^2-2x}{x^2-1}.\frac{1-x^4}{\left(2-3x\right)^3}\)
g. \(\frac{5xy}{2x-3}:\frac{15xy^3}{12-8x}\)
h. \(\frac{x^2+2x}{3x^2-6x+3}:\frac{2x+4}{5x-5}\)
Các ĐKXĐ: bạn tự tìm
a)
\(\frac{11x+10}{3x-3}+\frac{15x+13}{4-4x}=\frac{11x+10}{3(x-1)}-\frac{15x+13}{4(x-1)}=\frac{4(11x+10)-3(15x+13)}{12(x-1)}\)
\(=\frac{-x+1}{12(x-1)}=\frac{-(x-1)}{12(x-1)}=\frac{-1}{12}\)
b)
\(\frac{5x+3}{x^2-3x}+\frac{9-x}{9-3x}=\frac{5x+3}{x(x-3)}+\frac{x-9}{3x-9}=\frac{5x+3}{x(x-3)}+\frac{x-9}{3(x-3)}\)
\(=\frac{3(5x+3)}{3x(x-3)}+\frac{x(x-9)}{3x(x-3)}=\frac{x^2+6x+9}{3x(x-3)}=\frac{(x+3)^2}{3x(x-3)}\)
c)
\(\frac{4xy-1}{5x^2y}-\frac{2xy-1}{5x^2y}=\frac{(4xy-1)-(2xy-1)}{5x^2y}=\frac{2xy}{5x^2y}=\frac{2}{5x}\)
d)
$\frac{x+8}{x^2-16}-\frac{2}{x^2+4x}=\frac{x+8}{(x-4)(x+4)}-\frac{2}{x(x+4)}$
$=\frac{x(x+8)}{x(x-4)(x+4)}-\frac{2(x-4)}{x(x+4)(x-4)}$
$=\frac{x^2+8x-2(x-4)}{x(x+4)(x-4)}=\frac{x^2+6x+8}{x(x+4)(x-4)}$
$=\frac{(x+2)(x+4)}{x(x+4)(x-4)}=\frac{x+2}{x(x-4)}$
e)
$\frac{x^2-49}{2x+1}.\frac{3}{7-x}=\frac{(x-7)(x+7)}{2x+1}.\frac{-3}{x-7}$
$=\frac{-3(x+7)}{2x+1}$
f)
$\frac{3x^2-2x}{x^2-1}.\frac{1-x^4}{(2-3x)^3}$
$=\frac{2x-3x^2}{x^2-1}.\frac{x^4-1}{(2-3x)^3}=\frac{x(2-3x)(x^2-1)(x^2+1)}{(x^2-1)(2-3x)^3}$
$=\frac{x(x^2+1)}{(2-3x)^2}$
g)
$\frac{5xy}{2x-3}:\frac{15xy^3}{12-8x}=\frac{5xy}{2x-3}.\frac{12-8x}{15xy^3}$
$=\frac{5xy}{2x-3}.\frac{-4(2x-3)}{15xy^3}=\frac{-4}{3y^2}$
h)
$\frac{x^2+2x}{3x^2-6x+3}:\frac{2x+4}{5x-5}=\frac{x(x+2)}{3(x-1)^2}:\frac{2(x+2)}{5(x-1)}$
$=\frac{x(x+2)}{3(x-1)^2}.\frac{5(x-1)}{2(x+2)}$
$=\frac{5x}{6(x-1)}$
Bài 1: Thực hiện các phép tính sau
a.\(\frac{11x+10}{3x-3}+\frac{15x+13}{4-4x}\)
b.\(\frac{5x+3}{x^2-3x}+\frac{9-x}{9-3x}\)
c.\(\frac{4xy-1}{5x^2y}-\frac{2xy-1}{5x^2y}\)
d.\(\frac{x+8}{x^2-16}-\frac{2}{x^2+4x}\)
e.\(\frac{x^2-49}{2x+1}.\frac{3}{7-x}\)
f.\(\frac{3x^2-2x}{x^2-1}.\frac{1-x^4}{\left(2-3x\right)^3}\)
g.\(\frac{5xy}{2x-3}:\frac{15xy^3}{12-8x}\)
h.\(\frac{x^2+2x}{3x^2-6x+3}:\frac{2x+4}{5x-5}\)
\(\frac{x-3}{3xy}\)+ \(\frac{5x+3}{3xy}\)
\(\frac{5x-7}{2x-3}+\frac{4-3x}{2x-3}\)
\(\frac{3x+5}{7x-1}-\frac{6-4x}{7x-1}\)
\(\frac{11x-7}{3-5x}-\frac{6x+4}{5x-3}\)
\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
\(\frac{1}{2x-10}+\frac{2x}{3x^2-15x}\)
1/ \(\frac{x-3}{3xy}\)+\(\frac{5x+3}{3xy}\)= \(\frac{6x}{3xy}\)=\(\frac{3}{y}\)
2/\(\frac{5x-7}{2x-3}\)+\(\frac{4-3x}{2x-3}\)=\(\frac{2x-3}{2x-3}\)=1
3/\(\frac{11x-7}{3-5x}\)-\(\frac{6x+4}{5x-3}\)=\(\frac{11x-7}{3-5x}\)+\(\frac{6x+4}{3-5x}\)=\(\frac{17x-3}{3-5x}\)
4/\(\frac{3}{2x+6}\)-\(\frac{x-6}{2x^2+6x}\)=\(\frac{3x}{x\left(2x+6\right)}\)-\(\frac{x-6}{x\left(2x+6\right)}\)=\(\frac{2x-6}{x\left(2x+6\right)}\)
5/\(\frac{1}{2x-10}\)+\(\frac{2x}{3x^2-15x}\)=\(\frac{1}{2\left(x-5\right)}\)+\(\frac{2x}{3x\left(x-5\right)}\)=\(\frac{3x}{6x \left(x-5\right)}\)+\(\frac{4x}{6x\left(x-5\right)}\)
=\(\frac{7x}{6x\left(x-5\right)}\)=\(\frac{7}{6\left(x-5\right)}\)
Tìm x:
a, \(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
b,\(\frac{3x-1}{40-5x}=\frac{25-3x}{5x-34}\)
Bài cộng phân thức
1. a) \(\frac{11x+13}{3x-3}+\frac{15x+17}{4-4x}\)
b) \(\frac{2x+1}{2x^2-x}+\frac{32x^2}{1-4x^2}+\frac{1-2x}{2x^2+x}\)
Bài cộng phân thức
1. a) \(\frac{11x+13}{3x-3}+\frac{15x+17}{4-4x}\)
b) \(\frac{2x+1}{2x^2-x}+\frac{32x^2}{1-4x^2}+\frac{1-2x}{2x^2+x}\)
really your name is crazy
and do you crazy
giải các pt sau
a)5X(X-2020)+X=2020
b)4(X-5)2-(2X+1)2=0
c)\(\frac{3X}{5}-\frac{2X+1}{3}=2-\frac{X-3}{15}\)
d)5X3+10X2+5X=0
e)2X3-8X=0
f)\(\frac{X^2+5}{25-X^2}=\frac{3}{X+5}+\frac{X}{X-5}\)
g)\(\frac{4}{2X-3}-\frac{4X}{9-4X^2}=\frac{1}{2X+3}\)
h)|2X-4|-15=1
i)20-3|2X+1|=17
k)|4X+2|-1,5=1
GIẢI GIÚP MÌNH NHANH VỚI NHA
\(5X\left(X-2020\right)+X=2020\)
\(\Leftrightarrow5X^2-10100X+X=2020\)
\(\Leftrightarrow5X^2-10099X=2020\)
\(\Leftrightarrow5X^2-10099X-2020=0\)
\(\Leftrightarrow5X^2-10100X+x-2020=0\)
\(\Leftrightarrow5X\left(X-2020\right)+X-2020=0\)
\(\Leftrightarrow\left(X-2020\right)\left(5X+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-\frac{1}{5}\end{cases}}\)
\(4\left(x-5\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-5\right)\right]^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-5\right)-2x-1\right]\left[2\left(x-5\right)+2x+1\right]=0\)
\(\Leftrightarrow\left(2x-10-2x-1\right)\left(2x-10+2x+1\right)=0\)
\(\Leftrightarrow-11\left(4x-9\right)=0\)
\(\Leftrightarrow x=\frac{9}{4}\)
\(a,5x\left(x-2020\right)+x=2020\)
\(< =>5x\left(x-2020\right)+x-2020=0\)
\(< =>\left(5x+1\right)\left(x-2020\right)=0\)
\(< =>\orbr{\begin{cases}5x+1=0\\x-2020=0\end{cases}}\)
\(< =>\orbr{\begin{cases}5x=-1\\x=2020\end{cases}< =>\orbr{\begin{cases}x=-\frac{1}{5}\\x=2020\end{cases}}}\)
\(b,4\left(x-5\right)^2-\left(2x+1\right)^2=0\)
\(< =>4\left(x^2-20x+25\right)-\left(4x^2+4x+1\right)=0\)
\(< =>4x^2-80x+100-4x^2-4x-1=0\)
\(< =>-84x+99=0< =>84x=99< =>x=\frac{99}{84}\)
Giải pt
a. \(x^5+3x^4-5x^2+3x+2=0\)
b. \(\frac{5x-5}{x^2-4x+6}+\frac{6x-6}{x^2-5x+7}=\frac{17}{2}\)
giải các hệ BPT sau:
a) \(\left\{{}\begin{matrix}5x-2>4x+5\\5x-4< x+2\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2x+1>3x+4\\5x+3\ge8x-9\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\frac{5x+2}{3}\ge4-x\\\frac{6-5x}{13}< 3x+1\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\frac{4x-5}{7}< x+3\\\frac{3x+8}{4}>2x-5\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}6x+\frac{5}{7}< 4x+7\\\frac{8x+3}{2}< 2x+5\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}15x-2>2x+\frac{1}{3}\\2\left(x-4\right)< \frac{3x-14}{2}\end{matrix}\right.\)
g) \(\left\{{}\begin{matrix}x-1\le2x-3\\3x< x+5\\5-3x\le2x-6\end{matrix}\right.\)
h) \(\left\{{}\begin{matrix}2x+\frac{3}{5}>\frac{3\left(2x-7\right)}{3}\\x-\frac{1}{2}< \frac{5\left(3x-1\right)}{2}\end{matrix}\right.\)
j) \(\left\{{}\begin{matrix}\frac{3x+1}{2}-\frac{3-x}{3}\le\frac{x+1}{4}-\frac{2x-1}{3}\\3-\frac{2x+1}{5}>x+\frac{4}{3}\end{matrix}\right.\)