Rút gọn biểu thức: \(N=\sqrt{4\sqrt{6}+8\sqrt{3}+4\sqrt{2}+18}\)
Rút gọn biểu thức:
\(\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}=\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{3}-1}}\)
\(=\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{6-2+2\sqrt{3}}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(1+\sqrt{3}\right)^2}=1+\sqrt{3}\)
Rút gọn biểu thức: \(\dfrac{a+2\sqrt{a}}{\sqrt{a}+2}-\dfrac{a-4}{\sqrt{a}-2}\)(a ≥ 0; a ≠ 4)
\(P=\dfrac{a+2\sqrt{a}}{\sqrt{a}+2}-\dfrac{a-4}{\sqrt{a}-2}\\ =\dfrac{\sqrt{a}\left(\sqrt{a}+2\right)}{\sqrt{a}+2}-\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\sqrt{a}-2}=\sqrt{a}-\left(\sqrt{a}+2\right)=-2\)
Ta có: \(P=\dfrac{a+2\sqrt{a}}{\sqrt{a}+2}-\dfrac{a-4}{\sqrt{a}-2}\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}+2\right)}{\sqrt{a}+2}-\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\sqrt{a}-2}\)
\(=\sqrt{a}-\sqrt{a}-2=-2\)
Rút gọn biểu thức: \(Q=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
Lời giải:
\(Q=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})+\sqrt{2}(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{(1+\sqrt{2})(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)
Rút gọn biểu thức sau:
A= \(\sqrt{11-4\sqrt{7}}+\frac{4}{3-\sqrt{7}}-\frac{21}{\sqrt{7}}\)
A=\(\sqrt{\left(\sqrt{7}-2\right)^2}\)+\(\frac{25\sqrt{7}-63}{3\sqrt{7}-7}\)=\(\frac{12\sqrt{7}-28}{3\sqrt{7}-7}\)=4
\(\left(\dfrac{2+\sqrt{a}}{2-\sqrt{a}}-\dfrac{2-\sqrt{a}}{2+\sqrt{a}}-\dfrac{4a}{a-4}\right):\left(\dfrac{2}{2-\sqrt{a}}-\dfrac{\sqrt{a}+3}{2\sqrt{a}-a}\right)\) rút gọn biểu thức
Rút gọn biểu thức sau :
A=\(\dfrac{3}{2\sqrt{3}}+\dfrac{3-\sqrt{3}}{1-\sqrt{3}}\)
A=\(\sqrt{45a}-2\sqrt{\frac{4a}{3}}+\frac{\sqrt{18a}}{\sqrt{6}}+\sqrt{5\frac{1}{3}a}\)
Rút gọn biểu thức A
Rút gọn biểu thức
\(P=\frac{\sqrt{\sqrt{7}-\sqrt{3}}-\sqrt{\sqrt{7}+\sqrt{3}}}{\sqrt{\sqrt{7}-2}}\)
RÚT GỌN BIỂU THỨC
A=\(4-\sqrt{21-8\sqrt{5}}\)
B=\(\sqrt{4-2\sqrt{3}+1}\)
C=\(\sqrt{8+2\sqrt{15}}-\sqrt{5-2\sqrt{6}}\)
D=\(\sqrt{28-10\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)
E=\(\sqrt{14-6\sqrt{5}}-\sqrt{21-8\sqrt{5}}\)
F=\(\sqrt{19-2\sqrt{40}}-\sqrt{19+3\sqrt{40}}\)
\(A=4-\sqrt{21-8\sqrt{5}}=4-\sqrt{4^2-8\sqrt{5}+\left(\sqrt{5}\right)^2}.\)
\(A=4-\sqrt{\left(4-\sqrt{5}\right)^2}=4-\left(4-\sqrt{5}\right)\)
=> \(A=\sqrt{5}\)