Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Thu Hà
Xem chi tiết
Mặc tử han
Xem chi tiết
Chiharu
29 tháng 9 2019 lúc 11:16

undefined

Chiharu
29 tháng 9 2019 lúc 11:42

undefined

Chiharu
29 tháng 9 2019 lúc 11:17

undefined

Minh Đăng
Xem chi tiết
Mai Linh
22 tháng 5 2016 lúc 20:11

\(\frac{\sqrt{\sqrt{4+\sqrt{15}}+\sqrt{5-\sqrt{21}}}}{\sqrt{6+\sqrt{35}}}\)+\(\sqrt{\frac{1}{4-2\sqrt{3}}}\)-\(\sqrt{\frac{1}{4+2\sqrt{3}}}\)

=\(\frac{\sqrt{\sqrt{\frac{1}{2}\left(8+2\sqrt{15}\right)}+\sqrt{\frac{1}{2}\left(10-2\sqrt{21}\right)}}}{\sqrt{\frac{1}{2}\left(12+2\sqrt{35}\right)}}\)+\(\sqrt{\frac{1}{3-2\sqrt{3}.1+1}}\)-\(\sqrt{\frac{1}{3+2\sqrt{3}.1+1}}\)

=\(\frac{\sqrt{\sqrt{\frac{1}{2}\left(5+2\sqrt{5}.\sqrt{3}+3\right)}+\sqrt{\frac{1}{2}\left(7-2\sqrt{7}.\sqrt{3}+3\right)}}}{\sqrt{\frac{1}{2}\left(7+2\sqrt{7}.\sqrt{5}+5\right)}}\)+\(\sqrt{\frac{1}{\left(\sqrt{3}-1\right)^2}}\)-\(\sqrt{\frac{1}{\left(\sqrt{3}+1\right)^2}}\)

=\(\frac{\sqrt{\sqrt{\frac{1}{2}\left(\sqrt{5}+\sqrt{3}\right)^2}+\sqrt{\frac{1}{2}\left(\sqrt{7}-\sqrt{3}\right)^2}}}{\sqrt{\frac{1}{2}\left(\sqrt{7}+\sqrt{5}\right)^2}}\)+\(\frac{1}{\sqrt{3}-1}\)-\(\frac{1}{\sqrt{3}+1}\)

=\(\frac{\sqrt{\sqrt{\frac{1}{2}}.\left(\sqrt{5}+\sqrt{3}\right)+\sqrt{\frac{1}{2}}.\left(\sqrt{7}-\sqrt{3}\right)}}{\sqrt{\frac{1}{2}}.\left(\sqrt{7}+\sqrt{5}\right)}\)+\(\frac{\sqrt{3}+1-\sqrt{3}+1}{3-1}\)

=\(\frac{\sqrt{\sqrt{\frac{1}{2}}.\left(\sqrt{7}+\sqrt{5}\right)}}{\sqrt{\frac{1}{2}}.\left(\sqrt{7}+\sqrt{5}\right)}\)+1

=\(\frac{1}{\sqrt{\sqrt{\frac{1}{2}}.\left(\sqrt{7}+\sqrt{5}\right)}}\)+1

Linh Nguyen
Xem chi tiết
tthnew
19 tháng 10 2020 lúc 15:11

a) \(\frac{3}{2+\sqrt{3}}+\frac{13}{4-\sqrt{3}}+\frac{6}{\sqrt{3}}\)

\(=\frac{3\left(2-\sqrt{3}\right)}{2^2-3}+\frac{13\left(4+\sqrt{3}\right)}{4^2-3}+\frac{6\sqrt{3}}{3}\)

\(=3\left(2-\sqrt{3}\right)+\left(4+\sqrt{3}\right)+2\sqrt{3}\)

\(=3.2+4=6+4=10\)

b) \(=\left[\frac{\left(\sqrt{14}-\sqrt{7}\right)\left(\sqrt{2}+1\right)}{2-1}+\frac{\left(\sqrt{15}-\sqrt{5}\right)\left(\sqrt{3}+1\right)}{3-1}\right]:\frac{1}{\sqrt{7}-\sqrt{5}}\)

\(=\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)=2\) (nhân bung mấy cái trong ngoặc vuông ra, rút gọn)

c) Gợi ý: \(28-10\sqrt{3}=5^2-2.5.\sqrt{3}+\sqrt{3}=\left(5-\sqrt{3}\right)^2\)

d) \(=\frac{3\left(3-2\sqrt{3}\right)}{3^2-\left(2\sqrt{3}\right)^2}+\frac{3\left(3+2\sqrt{3}\right)}{3^2-\left(2\sqrt{3}\right)^2}=-6\)

e) Tự làm.

tthnew
20 tháng 10 2020 lúc 5:59

Cái câu c đánh nhầm:

\(=5^2-2.5.\sqrt{3}+3=\left(5-\sqrt{3}\right)^2\) nha!

NguyenHa ThaoLinh
Xem chi tiết
batman4019
12 tháng 8 2019 lúc 19:50

những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé

Anh Phuong
Xem chi tiết
Lê Thị Thục Hiền
25 tháng 8 2019 lúc 17:03

a,\(\left(5+4\sqrt{2}\right)\left(3+2\sqrt{1+\sqrt{2}}\right)\left(3-2\sqrt{1+\sqrt{2}}\right)\)

=\(\left(5+4\sqrt{2}\right)\left(9-4\left(1+\sqrt{2}\right)\right)\)

=\(\left(5+4\sqrt{2}\right)\left(9-4-4\sqrt{2}\right)\)

=\(\left(5+4\sqrt{2}\right)\left(5-4\sqrt{2}\right)=25-\left(4\sqrt{2}\right)^2\)

=-7

b, \(\sqrt{\frac{9}{4}-\sqrt{2}}=\sqrt{\frac{9-4\sqrt{2}}{4}}=\frac{\sqrt{9-4\sqrt{2}}}{2}=\frac{\sqrt{9-2\sqrt{8}}}{2}=\frac{\sqrt{\left(\sqrt{8}-1\right)^2}}{2}=\frac{\left|\sqrt{8}-1\right|}{2}=\frac{\sqrt{8}-1}{2}\)

Nguyễn Phương Uyên
26 tháng 8 2019 lúc 10:04

So sánh:

1) \(2\sqrt{27}\)\(\sqrt{147}\)

+ \(2\sqrt{27}\) = \(6\sqrt{3}\)

+ \(\sqrt{147}\) = \(7\sqrt{3}\)

\(6\sqrt{3}\) < \(7\sqrt{3}\)

Vậy: \(2\sqrt{27}\)< \(\sqrt{147}\)

2) \(2\sqrt{15}\)\(\sqrt{59}\)

+ \(2\sqrt{15}\) = \(\sqrt{60}\)

\(\sqrt{60}\) > \(\sqrt{59}\)

Vậy: \(2\sqrt{15}\) > \(\sqrt{59}\)

3) \(2\sqrt{2}-1\) và 2

\(giống\left(-1\right)\left\{{}\begin{matrix}3-1\\2\sqrt{2}-1\end{matrix}\right.\)

So sánh: 3 và \(2\sqrt{2}\)

+ 3 = \(\sqrt{9}\)

+ \(2\sqrt{2}=\sqrt{8}\)

\(\sqrt{8}\) < \(\sqrt{9}\)

\(\sqrt{8}\) -1 < \(\sqrt{9}\) -1

\(2\sqrt{2}\) - 1 < 3 - 1

Vậy: \(2\sqrt{2}-1< 2\)

4) \(\frac{\sqrt{3}}{2}\) và 1

+ 1 = \(\frac{2}{2}\)

\(\frac{\sqrt{3}}{2}\) < \(\frac{2}{2}\)

Vậy: \(\frac{\sqrt{3}}{2}\) < 1

5) \(\frac{-\sqrt{10}}{2}\)\(-2\sqrt{5}\)

+ \(-2\sqrt{5}\) = \(\frac{-4\sqrt{5}}{2}\) = \(\frac{-\sqrt{80}}{2}\)

\(\frac{-\sqrt{10}}{2}\) > \(\frac{-\sqrt{80}}{2}\)

Vậy: \(\frac{-\sqrt{10}}{2}\) > \(-2\sqrt{5}\)

NguyenHa ThaoLinh
Xem chi tiết
NguyenHa ThaoLinh
7 tháng 6 2019 lúc 15:31

Thêm câu này hộ tớ nx nhé !
e) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right).\left(\sqrt{2}-3\sqrt{0.4}\right)\)

Nguyễn Thị Bích Ngọc
14 tháng 7 2019 lúc 15:19

\(a,\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right)\cdot\frac{1}{\sqrt{6}}\)

\(=\left(\frac{\sqrt{12}-\sqrt{6}}{2\left(\sqrt{2}-1\right)}-\frac{6\sqrt{6}}{3}\right)\cdot\frac{1}{\sqrt{6}}\)

\(=\left(\frac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right)\cdot\frac{1}{\sqrt{6}}\)

\(=\left(\frac{\sqrt{6}}{2}-\frac{4\sqrt{6}}{2}\right)\cdot\frac{1}{\sqrt{6}}\)

\(=\frac{\sqrt{6}-4\sqrt{6}}{2}\cdot\frac{1}{\sqrt{6}}\)

\(=\frac{-3\sqrt{6}}{2}\cdot\frac{1}{\sqrt{6}}\)

\(=-\frac{3}{2}\)

Nguyễn Thị Bích Ngọc
14 tháng 7 2019 lúc 15:54

\(b,\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)

\(=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}+\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\right).\left(\sqrt{7}-\sqrt{5}\right)\)

\(=\left(\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right).\left(\sqrt{7}-\sqrt{5}\right)\)

\(=\left(-\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)

\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)

\(=-\left(7-5\right)\)

\(=-2\)

Hiền Trà
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2020 lúc 17:49

a) Ta có: \(A=\frac{8+2\sqrt{15}+\sqrt{21}+\sqrt{35}}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)

\(=\frac{\left(\sqrt{3}+\sqrt{5}\right)^2+\sqrt{7}\cdot\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)

\(=\frac{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}+\sqrt{7}\right)}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)

\(=\sqrt{3}+\sqrt{5}\)

b) Ta có: \(B=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{6}}\)

\(=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+\frac{\sqrt{4}-\sqrt{3}}{\left(\sqrt{4}+\sqrt{3}\right)\left(\sqrt{4}-\sqrt{3}\right)}+\frac{\sqrt{5}-\sqrt{4}}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}+\frac{\sqrt{6}-\sqrt{5}}{\left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right)}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+2-\sqrt{3}+\sqrt{5}-2+\sqrt{6}-\sqrt{5}\)

\(=-1+\sqrt{6}\)

Sasuke The Last
Xem chi tiết