Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kaneki Ken
Xem chi tiết
khong có
Xem chi tiết
Đỗ Tuệ Lâm
8 tháng 2 2022 lúc 14:20

Bn tk hen:

undefined

Lê Thu Hiền
Xem chi tiết
ttt
Xem chi tiết
Nguyễn Minh Quang
28 tháng 7 2021 lúc 22:55

a. ta có

\(x^2+2x-1+4x+2=\left(2x+1\right)\sqrt{x^2+2x+3}\)

\(\Leftrightarrow x^2+2x-1=\left(2x+1\right)\left[\sqrt{x^2+2x+3}-2\right]\Leftrightarrow x^2+2x-1=\left(2x+1\right).\frac{x^2+2x-1}{\sqrt{x^2+2x+3}+2}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2+2x+3}+2=2x+1\\x^2+2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2+2x+3}=2x-1\\x=-1\pm\sqrt{2}\end{cases}}}\)

với \(\sqrt{x^2+2x+3}=2x-1\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x^2+2x+3=4x^2-4x+1\end{cases}\Leftrightarrow x=\frac{3+\sqrt{15}}{3}}\)

b.\(3\sqrt{x-2}-\sqrt{x+6}=2x-6\Leftrightarrow\frac{8\left(x-3\right)}{3\sqrt{x-2}+\sqrt{x+6}}=2\left(x-3\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\3\sqrt{x-2}+\sqrt{x+6}=4\end{cases}}\)

với \(3\sqrt{x-2}+\sqrt{x+6}=4\Leftrightarrow10x-12+6\sqrt{\left(x-2\right)\left(x+6\right)}=16\)

\(\Leftrightarrow3\sqrt{x^2+4x-12}=14-5x\) xét điều kiện rồi bình phương thôi bạn nhé

Khách vãng lai đã xóa
Nguyễn Nguyên
Xem chi tiết
Trần Minh Hoàng
18 tháng 12 2020 lúc 18:27

ĐKXĐ: \(x\ge1\).

Phương trình đã cho tương đương:

\(\sqrt{x+3}+\sqrt{x-1}=\dfrac{8}{\sqrt{4x^4-12x^3+9x^2+16}-\left(2x^2-3x\right)}\)

\(\Leftrightarrow\sqrt{x+3}+\sqrt{x-1}=\dfrac{\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)}{2}\)

\(\Leftrightarrow\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)-2\sqrt{x+3}-2\sqrt{x-1}=0\)

\(\Leftrightarrow\left(\sqrt{4x^4-12x^3+9x^2+16}-2\sqrt{x+3}\right)+\left(2x^2-3x-2\sqrt{x-1}\right)=0\)

\(\Leftrightarrow\dfrac{4x^4-12x^3+9x^2-4x+4}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{4x^4-12x^3+9x^2-4x+4}{2x^2-3x+2\sqrt{x-1}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x^3-4x^2+x-2\right)\left(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}\right)=0\).

Do \(x\ge1\) nên ta có \(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}>0\).

Do đó \(\left[{}\begin{matrix}x-2=0\Leftrightarrow x=2\left(TMĐK\right)\\4x^3-4x^2+x-2=0\left(1\right)\end{matrix}\right.\).

Giải phương trình bậc 3 ở (1) ta được \(x=\dfrac{\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}{\sqrt[6]{279936}}+\dfrac{1}{\sqrt[6]{7776}\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}+\dfrac{1}{3}\approx1,157298106\left(TMĐK\right)\).

Vậy...

 

 

 

Trần Minh Hoàng
18 tháng 12 2020 lúc 18:49

Vì trong bài làm của mình có một số dòng khá dài nên bạn có thể vào trang cá nhân của mình để đọc tốt hơn!

Phạm Trần Phát
Xem chi tiết
Nguyễn Trung Hiếu
Xem chi tiết
ngonhuminh
17 tháng 1 2017 lúc 16:58

Nhìn không đủ chán rồi không dám động vào

Vũ Như Mai
17 tháng 1 2017 lúc 17:05

Viết đề kiểu gì v @@

Vũ Như Mai
17 tháng 1 2017 lúc 17:12

À do nãy máy lag sr :) Chứ bài đặt ẩn phụ mệt lắm :)

Nhật Hạ
Xem chi tiết
Ngọc Quách
Xem chi tiết
Thắng Nguyễn
11 tháng 6 2017 lúc 19:27

xem lại đề câu 1đi nhé 

Thắng Nguyễn
11 tháng 6 2017 lúc 20:39

b)\(\frac{1}{x+\sqrt{x^2+x}}+\frac{1}{x-\sqrt{x^2+x}}=x\)

\(\Leftrightarrow\frac{x-\sqrt{x^2+x}}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}+\frac{x+\sqrt{x^2+x}}{\left(x-\sqrt{x^2+x}\right)\left(x+\sqrt{x^2+x}\right)}-\frac{x\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{x-\sqrt{x^2+x}+x+\sqrt{x^2+x}-x^2}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{-x^2+2x}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

\(\Leftrightarrow\frac{-x\left(x+2\right)}{\left(x+\sqrt{x^2+x}\right)\left(x-\sqrt{x^2+x}\right)}=0\)

Dễ thấy: x=0 ko là nghiệm nên \(x+2=0\Rightarrow x=-2\)

c)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{\left(2x+4\right)-4\left(2-x\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}\)

\(\Leftrightarrow\frac{2\left(3x-2\right)}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4\left(3x-2\right)}{\sqrt{9x^2+16}}=0\)

\(\Leftrightarrow\left(3x-2\right)\left(\frac{2}{\sqrt{2x+4}+2\sqrt{2-x}}-\frac{4}{\sqrt{9x^2+16}}\right)=0\)

\(\Leftrightarrow x=\frac{2}{3}\)

Rau
11 tháng 6 2017 lúc 21:30

Toàn bị Liên Hợp nhai não :v