Tìm các số tự nhiên \(a\ne b\ne0\)sao cho \(\hept{\begin{cases}a+b=n\\ab⋮n\end{cases}}\)(n thuộc N*)
Tìm tất cả các số tự nhiên có 3 chữ số abc sao cho
\(\hept{\begin{cases}abc=n^2-1\\cba=\left(n-2\right)^2\end{cases}}\)
tham khảo câu hỏi này có thể ib để đưa link ạ :V:
Câu hỏi của ngô đăng khoa
Link: https://olm.vn/hoi-dap/detail/5436494442.html
Tìm các số nguyên a, b, n thỏa mãn \(\hept{\begin{cases}n^2=a+b\\n^3+1=a^2+b^2\end{cases}}\)
Sửa đề \(\hept{\begin{cases}n^2=a+b\\n^3+2=a^2+b^2\end{cases}}\)
Có \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Leftrightarrow n^4\le2\left(n^3+2\right)\) hay \(n^3\left(n-2\right)-4\le0\)
Nếu \(n\ge3\)thì \(n^3\left(n-2\right)-4\ge n^3-4>0\left(ktm\right)\Rightarrow n=\left\{0;1;2\right\}\)
Với n=0;1 không có số nguyên a,b thỏa mãn
Với n=2 \(\Rightarrow\orbr{\begin{cases}a=1;b=3\\a=3;b=1\end{cases}\left(tm\right)}\)
Vậy (n,a,b)={(2;1;3);(2;3;1)}
\(a^2+b^2=n^3+2\ge0\)\(\Rightarrow\)\(n\ge-1\)
Quỳnh xét thiếu n=-1
\(a-b⋮7\Rightarrow a⋮6,b⋮7\)
\(\Rightarrow4a⋮7;3b⋮7\)
\(\Rightarrow4a+3b⋮7\) (đpcm)
tìm tất cả các số tự nhiên abc là số có 3 chữ số sao cho
\(\hept{\begin{cases}abc=n^2-1\\cba=\left(n-2\right)^2\end{cases}}\)với n là số nguyên lớn hơn 2
Tìm 2 số tự nhiên a,b biết:\(\hept{\begin{cases}a^4+b^4=17\\a+b=3\end{cases}}\)
Có: a; b là hai số tự nhiên.
Không mất tính tổng quát: g/s: a\(\le\)b
Ta có: a + b = 3
TH1: a = 0 ; b = 3 => \(a^4+b^4=0+3^4=81\ne17\)loại
TH2: a = 1; b = 2 => \(a^4+b^4=1^4+2^4=17\)tm
Vậy a = 1; b = 2 hoặc a = 2; b = 1
Cho A= \(\hept{\begin{cases}1;2;4\\\end{cases}}\)
B= \(\hept{\begin{cases}1;2;3;4;5;7\\\end{cases}}\)
Tìm X sao cho A con X,X con B
\(X=\left\{1;2;4;5;7\right\}\)
tìm tất cả các số tự nhiên abc có 3 chữ số sao cho :
\(\begin{cases}abc=n^2-1\\cbc=\left(n-2\right)^2\end{cases}\) với n là số nguyên lớn hơn 2
Ta có:
abc - cba = (n2 - 1) - (n - 2)2
=> (100a + 10b + c) - (100c + 10b + a) = n2 - 1 - [(n - 2).n - (n - 2).2]
=> 100a + 10b + c - 100c - 10b - a = n2 - 1 - n2 + 2n + 2n - 4
=> 99a - 99c = 4n - 5
=> 99.(a - c) = 4n - 5
=> 4n - 5 chia hết cho 99
Mà 99 < abc < 1000 => 99 < n2 - 1 < 1000
=> 100 < n2 < 1001
=> 10 < n < 32
=> 35 < 4n - 5 < 123
=> 4n - 5 = 99
=> 4n = 99 + 5 = 104
=> n = 104 : 4 = 26
=> abc = 262 - 1 = 676 - 1 = 675
Vậy số cần tìm là 675
cho các số x, y, a, b, thỏa mãn \(\hept{\begin{cases}x+y=a+b\\x^4+y^4=a^4+b^4\end{cases}}\)
CMR \(x^n+y^n=a^n+b^n\)
Theo bài ra ta có: x4+y4=a4+b4 =>x4-a4=b4-y4 =>(x2-a2)(x2+a2) = (b2-y2)(b2+y2) =>(x-a)(x+a)(x2+a2) = (b-y)(b+y)(b2+y2) (1)
Ta có: x+y=a+b=>x-a=b-y (2)
Từ (1) và (2) suy ra
(b-y)(x+a)(x2+a2) - (b-y)(b+y)(b2+y2) = 0
=>(b-y) [(x+a)(x2+a2) - (b+y)(b2+y2)] = 0
Nếu b=y thì x=a, suy ra xn+yn=an+bn
Nếu (x+a)(x2+a2)-(b+y)(b2+y2)=0
=>(x+a)(x2+a2)=(b+y)(b2+y2)
=>x+a=b+y và x2+a2=y2+b2 (*)
=>x=b+y-a (3) và x2+a2=y2+b2 (4)
Thay (3) vào (4) ta được:
(b+y-a)2+a2=y2+b2
=>b2+y2+a2+2by-2ab-2ay+a2=b2+y2
=>2a2+2by-2ab-2ay=0
=>a2+by-ab-ay=0
=>a(a-b)-y(a-b)=0 =>(a-b)(a-y)=0
=>a=b hoặc a=y
*Nếu a=b từ (*) suy ra x=y
=> xn+yn=an+bn
*Nếu a=y từ (*) suy ra x=b
=>xn+yn=an+bn
Vậy xn+yn=an+bn
Lưu ý: biểu thức chỉ đúng với n dương
Theo bài ra ta có: x4+y4=a4+b4 =>x4-a4=b4-y4 =>(x2-a2)(x2+a2) = (b2-y2)(b2+y2) =>(x-a)(x+a)(x2+a2) = (b-y)(b+y)(b2+y2) (1)
Ta có: x+y=a+b=>x-a=b-y (2)
Từ (1) và (2) suy ra
(b-y)(x+a)(x2+a2) - (b-y)(b+y)(b2+y2) = 0
=>(b-y) [(x+a)(x2+a2) - (b+y)(b2+y2)] = 0
Nếu b=y thì x=a, suy ra xn+yn=an+bn
Nếu (x+a)(x2+a2)-(b+y)(b2+y2)=0
=>(x+a)(x2+a2)=(b+y)(b2+y2)
=>x+a=b+y và x2+a2=y2+b2 (*)
=>x=b+y-a (3) và x2+a2=y2+b2 (4)
Thay (3) vào (4) ta được:
(b+y-a)2+a2=y2+b2
=>b2+y2+a2+2by-2ab-2ay+a2=b2+y2
=>2a2+2by-2ab-2ay=0
=>a2+by-ab-ay=0
=>a(a-b)-y(a-b)=0 =>(a-b)(a-y)=0
=>a=b hoặc a=y
*Nếu a=b từ (*) suy ra x=y
=> xn+yn=an+bn
*Nếu a=y từ (*) suy ra x=b
=>xn+yn=an+bn
Vậy xn+yn=an+bn
1) Tìm các số tự nhiên n thỏa mãn 42019 +3n có chữ số tận cùng là 7
2) Tìm các bộ số tự nhiên (a1,a2,a3,...,a2019) thỏa mãn:
\(\hept{\begin{cases}a1+a2+a3+...+a2019\ge2019^2\\a1^2+a2^2+a3^2+...+a2019^2\le2019^3+1\end{cases}}\)
bài 2
Cộng 2 vế của -4038.(1) + (2) ta được
\(a_1^2+a_2^2+...+a_{2019}^2-4038\left(a_1+a_2+...+a_{2019}\right)\le2019^3+1-4028.2019^2\)
\(\Leftrightarrow a_1^2+a_2^2+...+a_{2019}^2-4038a_1-4038a_2-...-4038a_{2019}\)
\(\le2019^3+1-2019.2019^2-2019.2019^2\)
\(\Leftrightarrow a_1^2+a_2^2+...+a_{2019}^2-4038a_1-4038a_2-...-4038a_{2019}+2019.2019^2\le1\)
\(\Leftrightarrow\left(a_1^2-4038a_1+2019^2\right)+...+\left(a_{2019}^2-4038a_{2019}+2019^2\right)\le1\)
\(\Leftrightarrow A=\left(a_1-2019\right)^2+\left(a_2-2019\right)^2+...+\left(a_{2019}-2019\right)^2\le1\)
Do \(a_1;a_2;...;a_{2019}\in N\)nên \(A\in N\)
\(\Rightarrow\orbr{\begin{cases}A=0\\A=1\end{cases}}\)
*Nếu A = 0
Dễ thấy \(A=\left(a_1-2019\right)^2+\left(a_2-2019\right)^2+...+\left(a_{2019}-2019\right)^2\ge0\forall a_1;a_2;...;a_{2019}\)
Nên dấu "=" xảy ra \(\Leftrightarrow a_1=a_2=a_3=...=a_{2019}=2019\)
*Nếu A = 1
\(\Leftrightarrow\left(a_1-2019\right)^2+\left(a_2-2019\right)^2+...+\left(a_{2019}-2019\right)^2=1\)(*)
Từ đó dễ dàng nhận ra trong 2019 số \(\left(a_1-2019\right)^2;\left(a_2-2019\right)^2;...;\left(a_{2019}-2019\right)^2\)phải tồn tại 2018 số bằng 0
Hay nói cách khác trong 2019 số \(a_1;a_2;a_3;...;a_{2019}\)phải tồn tại 2018 số có giá trị bằng 2019
Giả sử \(a_1=a_2=...=a_{2018}=2019\)
Khi đó (*)\(\Leftrightarrow\left(a_{2019}-2019\right)^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}a_{2019}=2020\\a_{2019}=2018\end{cases}}\)
Thử lại...(tự thử nhé)
Vậy...
Bài 1 : Vì \(4^{2019}\)có cơ số là 4 , số mũ 2019 là lẻ nên có tận cùng là 4
Để \(4^{2019}+3^n\)có tận cùng là 7 thì \(3^n\)có tận cùng là 3
Mà n là số tự nhiên nên n = 1
2. Chứng minh : Với n là số tự nhiên:
Ta chứng minh: \( a_1^2+a_2^2+a_3^2+...+a_n^2\geq \dfrac{(a_1+2_2+a_3+...+a_n)^2}{n}\)
Dấu bằng xảy ra khi và chỉ khi: \(a_1=a_2=...=a_n\)
\(\text{Chứng minh quy nạp}\):
+) Với n=1, n=2 thỏa mãn
+)Giả sử đúng với n=k \( a_1^2+a_2^2+a_3^2+...+a_k^2\geq \dfrac{(a_1+a_2+a_3+...+a_k)^2}{k}\)
Dấu bằng xảy ra khi và chỉ khi: \(a_1=a_2=...=a_k\)
+) Ta chứng minh đúng vs : \(n=k+1\)
Thật vậy: \(a_1^2+a_2^2+a_3^2+...+a_{k+1}^2=(a_1^2+a_2^2+a_3^2+...+a_k^2)+a_{k+1}^2\geq \dfrac{(a_1+a_2+a_3+...+a_k)^2}{k}+a_{k+1}^2\)
Mặt khác ta có: \(\dfrac {A^2}{k}+a_{k+1}^2\geq \dfrac {(A+a_{k+1})^2}{k+1} \)
\(\Leftrightarrow \left(k+1\right)A^2+k\left(k+1\right)a^2_{k+1}=k\left(A^2+2Aa_{k+1}+a^2_{k+1}\right)\)
\(\Leftrightarrow A^2+k^2a^2_{k+1}-2kAa_{k+1}\geq 0\)
\(\Leftrightarrow (A-ka_{k+1})^2\geq 0\) ( luôn đúng)
Do đó: \(a_1^2+a_2^2+a_3^2+...+a_{k+1}^2\geq \dfrac{(a_1+a_2+a_3+...+a_k)^2}{k}+a_{k+1}^2\geq \dfrac{(a_1+a_2+a_3+...+a_{k+1})^2}{k+1}\)
Dấu bằng xảy ra khi và chỉ khi: \(a_1=a_2=...=a_{k+1}\)
Vậy: \( a_1^2+a_2^2+a_3^2+...+a_n^2\geq \dfrac{(a_1+2_2+a_3+...+a_n)^2}{n}\)với mọi n là số tự nhiên
Dấu bằng xảy ra khi và chỉ khi: \(a_1=a_2=...=a_n\)
\(\text {Quay lại bài Toán của chúng ta}\):
Vậy \(a_1^2+a_2^2+a_3^2+...+a_{2019}^2\geq \dfrac{(a_1+a_2+a_3+...+a_{2019})^2}{2019}\geq \dfrac {2019^4}{2019}\)
=> \(2019^3+1\geq \dfrac{(a_1+a_2+a_3+...+a_{2019})^2}{2019}\geq \dfrac {2019^4}{2019}\)
Hay \(2019^4\leq (a_1+a_2+a_3+...+a_{2019})^2\leq 2019^4+2019<(2019^2+1)^2\)
Suy ra \(a_1+a_2+a_3+...+a_n=2019^2\)
Dấu bằng xảy ra khi và chỉ khi: \(a_1=a_2=a_3=...=a_n=2019\)