Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Lam Hàng
Xem chi tiết
Làm biếng quá
20 tháng 2 2019 lúc 15:40

giúp em liền

Ta có: \(\frac{1}{x^2+1}+\frac{1}{y^2+1}\ge\frac{2}{1+xy}\)

\(\Leftrightarrow\) \(\left(\frac{1}{x^2+1}-\frac{1}{1+xy}\right)+\left(\frac{1}{1+y^2}-\frac{1}{1+xy}\right)\ge0\)

\(\Leftrightarrow\frac{x\left(y-z\right)}{\left(1+x^2\right)\left(1+y^2\right)}+\frac{y\left(x-y\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{\left(y-z\right)^2\left(xy-1\right)}{\left(x^2+1\right)\left(y^2+1\right)\left(1+Xy\right)}\ge0\)

=> đúng

Tương tự ta được: \(\frac{1}{x^2+1}+\frac{1}{y^2+1}\ge\frac{2}{1+Xy}\ge\frac{2}{1+xyz}\) (vì z\(\ge1\) )

                                \(\frac{1}{y^2+1}+\frac{1}{z^2+1}\ge\frac{2}{1+xyz}\)

                                  \(\frac{1}{z^2+1}+\frac{1}{x^2+1}\ge\frac{2}{1+xyz}\)

công vế theo vế \(\Rightarrow\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\ge\frac{3}{1+xyz}\)

dấu "=" xảy ra <=> x=y=z=1

Làm biếng quá
20 tháng 2 2019 lúc 15:41

ủa mà lạ lắm à nghen em nói em bắt đầu off rồi mà + cách nói ell giống pé châu => ai on nick này z?

Tôi Là Ai
Xem chi tiết
NGUYEN NHAT MINH
2 tháng 1 2017 lúc 17:00

dvfvgf

zZz Cool Kid_new zZz
14 tháng 8 2019 lúc 8:42

Bạn tham khảo tại đây:

Câu hỏi của Tôi Là Ai - Toán lớp 8 - Học toán với OnlineMath

okazaki *  Nightcore -...
14 tháng 8 2019 lúc 9:06

link tham khảo 

link : https://olm.vn/hoi-dap/detail/61362911807.html

hok tốt

Tôi Là Ai
Xem chi tiết
Nguyễn Thiên Kim
21 tháng 10 2016 lúc 23:03

Do xyz = 1, ta có thể đặt \(a=\frac{x}{x-1},\)\(b=\frac{y}{y-1},\)\(c=\frac{z}{z-1}\)

Ta có \(abc=\frac{x}{x-1}.\frac{y}{y-1}.\frac{z}{z-1}=\frac{xyz}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}=\frac{1}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}\) (1)

Mặt khác \(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(\frac{x}{x-1}-1\right).\left(\frac{y}{y-1}-1\right).\left(\frac{z}{z-1}-1\right)\)

            \(=\frac{x-x+1}{x-1}.\frac{y-y+1}{y-1}.\frac{z-z+1}{z-1}=\frac{1}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}\)(2)

So sánh (1) và (2) ta có \(abc=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)\(\Leftrightarrow\)\(abc=abc-ab-bc-ca+a+b+c-1\)\(\Leftrightarrow\)\(ab+bc+ca-a-b-c+1=0\) (3)

Mà với mọi a, b, c ta luôn có \(\left(a+b+c-1\right)^2\ge0\)

Hay \(a^2+b^2+c^2+2\left(ab+bc+ca-a-b-c+1\right)-1\ge0\) (4)

Thay (3) vào (4) ta được \(a^2+b^2+c^2\ge1\) hay \(\frac{x^2}{\left(x-1\right)^2}+\frac{y^2}{\left(y-1\right)^2}+\frac{z^2}{\left(z-1\right)^2}\ge1\)

Jenny123
22 tháng 10 2016 lúc 20:31

bạn viết gì mà mik chẳng hiểu gì cả

huynh van duong
Xem chi tiết
Phạm Thanh Long
15 tháng 12 2021 lúc 13:02

em không biết

Khách vãng lai đã xóa
Hoài
15 tháng 12 2021 lúc 13:23

gà quá

Khách vãng lai đã xóa
Flower in Tree
15 tháng 12 2021 lúc 13:26

Từ giả thiết \(x+y+z=xyz=\frac{1}{xy}\)\(=\frac{1}{yz}\)\(=\frac{1}{zx}\)\(=1\)

Đặt \(\frac{1}{x}\)\(=a,\frac{1}{y}\)\(=b,\frac{1}{z}\)\(=c=ab+bc+ca=1\)

Ta có :

\(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\)\(=\sqrt{\frac{1}{\sqrt{1+x^2}}+}+\sqrt{\frac{1}{\sqrt{1+y^2}}+\sqrt{\frac{1}{\sqrt{1+z^2}}}}\)

\(=\sqrt{\frac{1}{x}+x}+\sqrt{\frac{1}{y}+y}+\sqrt{\frac{1}{z}+z}=\sqrt{\frac{a}{a+\frac{1}{a}}}+\sqrt{\frac{b}{b+\frac{1}{b}}}\)\(+\sqrt{\frac{c}{c+\frac{1}{c}}}\)

\(=\frac{a}{\sqrt{a^2}+1}\)\(+\frac{b}{\sqrt{b^2}+1}\)\(+\frac{c}{\sqrt{c^2}+1}\)

Đến đây :

\(\frac{a}{\sqrt{a^2}+1}\)\(=\frac{a}{\left(a^2+ab+bc+ca\right)}\)\(=\frac{a}{\sqrt{\left(a+b\right)}\left(a+c\right)}\)

\(=\sqrt{\frac{a}{a+b}}\)\(\cdot\frac{a}{a+c}\)\(< \frac{1}{2}\)\(\left(\frac{b}{b+a}+\frac{b}{b+c}\right);\frac{c}{\sqrt{c^2}+1}\)\(< \frac{1}{2}\)\(\left(\frac{c}{c+a}+\frac{c}{c+b}\right)\)

ộng 3 bất đẳng thức lại ta có điều phải chứng minh

Khách vãng lai đã xóa
Siêu Nhân Lê
Xem chi tiết
Trần Văn Thành
22 tháng 10 2016 lúc 14:10

dia chi ban vua truy cap khong tim thay

alibaba nguyễn
22 tháng 10 2016 lúc 17:00

Vì xyz = 1 nên ta có thể đặt \(x=\frac{a^2}{bc};y=\frac{b^2}{ac};z=\frac{c^2}{ab}\left(a,b,c>0,a^2\ne bc,b^2\ne ac,c^2\ne ab\right)\)

Khi đó bất đẳng thức tương đương với

\(\frac{a^4}{\left(a^2-bc\right)^2}+\frac{b^4}{\left(b^2-ac\right)^2}+\frac{c^4}{\left(c^2-ab\right)^2}\ge1\)

Mà ta có

\(\frac{a^4}{\left(a^2-bc\right)^2}+\frac{b^4}{\left(b^2-ac\right)^2}+\frac{c^4}{\left(c^2-ab\right)^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2}\)

Ta cần chứng minh

\(\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2}\ge1\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge0\left(đúng\right)\)

Vậy ta có điều phải chứng minh

Jenny123
22 tháng 10 2016 lúc 20:05

câu hỏi của bạn mình ko làm đc. với lại địa chỉ ko có

KCLH Kedokatoji
Xem chi tiết
ʚ๖ۣۜAηɗσɾɞ‏
26 tháng 10 2020 lúc 12:13

Đặt \(A=\frac{x}{y^4+2}+\frac{y}{z^42}+\frac{z}{x^4+2}\ge1\)

\(A=\frac{y^4}{x+2}+\frac{z^4}{y+2}+\frac{x^4}{z+2}\ge1\)

Còn lại thì bạn tính tổng nha! Lớn hơn hoặc bằng 1 là được :))

Khách vãng lai đã xóa
Nam Thanh Long
Xem chi tiết
alibaba nguyễn
22 tháng 5 2017 lúc 11:19

\(\frac{x^2}{2y}+\frac{y^2}{2x}+\frac{y^2}{2z}+\frac{z^2}{2y}+\frac{z^2}{2x}+\frac{x^2}{2z}\ge\frac{\left(2x+2y+2z\right)^2}{4\left(x+y+z\right)}=x+y+z\)

Đinh Thị Ngọc Anh
Xem chi tiết
Himara Kita
31 tháng 12 2015 lúc 17:29

là câu hỏi tương tự nha bạn

Vu Dang Toan
Xem chi tiết
Thắng Nguyễn
17 tháng 1 2017 lúc 22:13

Bài 1:Áp dụng C-S dạng engel

\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)

\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)