tìm x nguyên để M=5/căn x+2 nguyên
A= căn x +1/ căn x-2+2 ×căn x/ căn x +2+2+5 căn x/4-x
a, tìm điều kiện xác định
b, rút gọn A
C, tìm x để a =2
D, tìm x nguyên để A có giá trị nguyên
E, tìm x thuộc R để A có giá trị nguyên
Cho biểu thức
M=căn x +1/2
A)Tìm các giá trị nguyên của x để M nhận giá trị nguyên
B)Tìm giá trị lớn nhất của biểu thức M
c)Tìm các giá trị nguyên của x để A nhận giá trị nguyên
cho 2 biểu thức A=( 15- căn x/x-25 +2/căn x +5): căn x +1 / căn x -5 Tìm x thức để M=A-B nguyên
\(A=\left(\frac{15-\sqrt{x}}{x-25}+\frac{2}{\sqrt{x}+5}\right)\div\frac{\sqrt{x}+1}{\sqrt{x}-5}\)( x >= 0 ; x khác 25 )
\(=\left[\frac{15-\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}+\frac{2\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right]\cdot\frac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(=\frac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\frac{\sqrt{x}-5}{\sqrt{x}+1}=\frac{1}{\sqrt{x}+1}\)
Còn bthuc B thì mình chả thấy đâu cả:)
Cho p=(2 căn x -9)/(căn x-2)(căn x-3) - (căn x+3)/(căn x-2) - (2 căn x+1)/(3-căn) ( x > 0; x ≠ 4, x ≠ 9)
a. Rút gọn P
b. Tìm x để P = 5
c. Tìm x nguyên để P có giá trị là số tự nhiên.
1. Tìm các giá trị nguyên của x để B nhận giá trị nguyên 2.Tìm các giá trị của x để B nhận giá trị nguyên 3. Tìm x biết : (căn x - 2).B + x - 3.căn x + căn 3 - 3x < hoặc bằng 0 B = căn x + 1/căn x - 2 Plsss làm ơn giúp t vs tớ ko bt làm mà cô này hay chửi t lắm huhu
Tìm số nguyên x để A là số nguyên biết:
Căn x -5 phần căn x+3
1,Tìm số nguyên m để C=căn(m^2+m+1) là số nguyên
2,cho hai số x,y thỏa mãn phương trình : 3x^2+4y^2-4xy-6x+4y=5.Tìm GTLN,GTNN của biểu thức M=2x+2015
Cho A= căn x / căn x-2
Tìm x nguyên để A nhận gt nguyên
ta có: \(A=\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{\sqrt{x}-2+2}{\sqrt{x}-2}=1+\frac{2}{\sqrt{x}-2}.\)
để A nguyên
\(\Rightarrow\frac{2}{\sqrt{x}-2}\in Z\Rightarrow2⋮\sqrt{x}-2\Rightarrow\sqrt{x}-2\inƯ_{\left(2\right)}=[\pm1;\pm2]\)
nếu \(\sqrt{x}-2=1\Rightarrow\sqrt{x}=3\Rightarrow x=9\left(TM\right)\)
...
bn tự xét tiếp nha!
\(A=\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{\sqrt{x}-2+2}{\sqrt{x}-2}=1+\frac{2}{\sqrt{x}-2}\)
\(A\inℤ\Leftrightarrow\frac{2}{\sqrt{x}-2}\in Z\Leftrightarrow2⋮\left(\sqrt{x}-2\right)\)
\(\Leftrightarrow\sqrt{x}-2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Lập bảng:
\(\sqrt{x}-3\) | \(1\) | \(-1\) | \(2\) | \(-2\) |
\(\sqrt{x}\) | \(4\) | \(2\) | \(5\) | \(1\) |
\(x\) | \(16\) | \(4\) | \(25\) | \(1\) |
Vậy \(x\in\left\{1;4;16;25\right\}\)
@ctk@ Trong cái bảng của em \(\sqrt{x}-2\) chứ ko phải \(\sqrt{x}-3\) Vì thế kết quả trong bảng của em sai hết rồi nha!