thực hiện phép tính
\(\frac{\sqrt[3]{x^4-x^2}}{x}\)
a. Thực hiện phép tính \(\frac{1}{2-\sqrt{3}}+\frac{3+\sqrt{3}}{\sqrt{3}}-\frac{4}{\sqrt{3}-1}\)
b. Giải phương trình \(\sqrt{3x+40}-4=x\)
a/ \(\frac{1}{2-\sqrt{3}}+\frac{3+\sqrt{3}}{\sqrt{3}}-\frac{4}{\sqrt{3}-1}\)
\(=2+\sqrt{3}+\sqrt{3}+1-2\sqrt{3}-2\)
\(=1\)
b/ \(\sqrt{3x+40}-4=x\)
\(\sqrt{3x+40}=x+4\)
Điều kiện: \(\hept{\begin{cases}3x+40\ge0\\x+4\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-\frac{40}{3}\\x\ge-4\end{cases}}\)
\(\Leftrightarrow x\ge-\frac{40}{3}\)
Ta có: \(3x+40=x^2+8x+16\)
\(\Leftrightarrow x^2+5x-24=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-8\left(l\right)\\x=3\end{cases}}\)
a. Thực hiện phép tính \(\frac{1}{2-\sqrt{3}}+\frac{3\sqrt{3}}{\sqrt{3}}-\frac{4}{\sqrt{3}-1}\)
b. Giải phương trình \(\sqrt{3x+40}-4=x\)
a. Ta có \(\frac{1}{2-\sqrt{3}}+\frac{3\sqrt{3}}{\sqrt{3}}-\frac{4}{\sqrt{3}-1}=\frac{2+\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+3-\frac{4\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=\frac{2+\sqrt{3}}{4-3}+3-\frac{4\left(\sqrt{3}+1\right)}{3-1}=2+\sqrt{3}+3-2\sqrt{3}-2=3-\sqrt{3}\)
b. \(\sqrt{3x+40}-4=x\)
ĐK \(3x+40\ge0\Leftrightarrow x\ge-\frac{40}{3}\)
\(\Leftrightarrow\sqrt{3x+40}=x+4\)\(\Leftrightarrow\hept{\begin{cases}x\ge-4\\3x+40=x^2+8x+16\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-4\\x^2+5x-24=0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge-4\\\left(x+8\right)\left(x-3\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-4\\x=-8;x=3\end{cases}}}\Leftrightarrow x=3\left(tm\right)\)
Vậy x=3
thực hiện phép tính
\(\sqrt{50x^3y^5}-\frac{2y^2}{x^2}\sqrt{32x^7y}+\frac{3xy}{2}\sqrt{2xy^3},x>0,y>0\)
thực hiện phép tính
\(\sqrt{50^3y^5}-\frac{2y^2}{x^2}\sqrt{32x^7y}+\frac{3xy}{2}\sqrt{2xy^3},x>0,y>0\)
Kết quả rất lẻ : \(\frac{-16y^2\sqrt{x^7y}+3x^3y\sqrt{xy^3}+500x^2\sqrt{y^5}}{\sqrt{2}x^2}\)
1) Thực hiện phép tính
\(\sqrt{50}-3\sqrt{8}+\sqrt{32}\)
2) Giải các phương trình sau:
a)\(\sqrt{x^2-4x+4}=1\)
b)\(\sqrt{x^2-3x}-\sqrt{x-3}=0\)
1.
\(\sqrt{50}-3\sqrt{8}+\sqrt{32}=5\sqrt{2}-6\sqrt{2}+4\sqrt{2}=3\sqrt{2}\)
2.
a, ĐK: \(x\in R\)
\(pt\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\)
\(\Leftrightarrow\left|x-2\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
b, ĐK: \(x\ge3\)
\(pt\Leftrightarrow\sqrt{x-3}\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=1\left(l\right)\end{matrix}\right.\)
Thực hiện phép tính :
a. \(\dfrac{4}{\sqrt{x}+1}+\dfrac{2}{1-\sqrt{x}}-\dfrac{\sqrt{x}-5}{x-1}\)
b. \(\left(\dfrac{x+1}{x+2}+\dfrac{x+2}{x+3}\right):\dfrac{x+3}{x+1}\)
\(a,=\dfrac{4\sqrt{x}-4-2\sqrt{x}-2-\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\left(x\ge0;x\ne1\right)\\ =\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{1}{\sqrt{x}+1}\\ b,=\dfrac{x^2+4x+3+x^2+4x+4}{\left(x+2\right)\left(x+3\right)}\cdot\dfrac{x+1}{x+3}\left(x\ne-1;x\ne-2;x\ne-3\right)\\ =\dfrac{\left(2x^2+8x+7\right)\left(x+1\right)}{\left(x+2\right)\left(x+3\right)^2}\)
Thực hiện phép tính :
a. \(\dfrac{4}{\sqrt{x}+1}+\dfrac{2}{1-\sqrt{x}}-\dfrac{\sqrt{x}-5}{x-1}\)
b. \(\left(\dfrac{x+1}{x+2}+\dfrac{x+2}{x+3}\right):\dfrac{x+3}{x+1}\)
\(a,\dfrac{4}{\sqrt{x}+1}+\dfrac{2}{1-\sqrt{x}}-\dfrac{\sqrt{x}-5}{x-1}\)
\(=\dfrac{4\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{4\sqrt{x}-4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{4\sqrt{x}-4-2\sqrt{x}-2-\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{1}{\sqrt{x}+1}\)
\(b,\left(\dfrac{x+1}{x+2}+\dfrac{x+2}{x+3}\right):\dfrac{x+3}{x+1}\)
\(=\left(\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}+\dfrac{\left(x+2\right)^2}{\left(x+2\right)\left(x+3\right)}\right).\dfrac{x+1}{x+3}\)
\(=\left(\dfrac{x^2+4x+3}{\left(x+2\right)\left(x+3\right)}+\dfrac{x^2+4x+4}{\left(x+2\right)\left(x+3\right)}\right).\dfrac{x+1}{x+3}\)
\(=\dfrac{x^2+4x+3+x^2+4x+4}{\left(x+2\right)\left(x+3\right)}.\dfrac{x+1}{x+3}\)
\(=\dfrac{2x^2+8x+7}{\left(x+2\right)\left(x+3\right)}.\dfrac{x+1}{x+3}\)
\(=\dfrac{\left(2x^2+8x+7\right)\left(x+1\right)}{\left(x+2\right)\left(x+3\right)^2}\)
\(=\dfrac{\left(2x^2+8x+7\right).x+2x^2+8x+7}{\left(x+2\right)\left(x+3\right)^2}\)
\(=\dfrac{2x^3+8x^2+7x+2x^2+8x+7}{\left(x+2\right)\left(x+3\right)^2}\)
\(=\dfrac{2x^3+10x^2+15x+7}{\left(x+2\right)\left(x+3\right)^2}\)
1. Thực hiện phép tính:
A = \(\frac{x}{x+2}+\sqrt{x-2}.\).
2. Giải phương trình:
a) \(\sqrt{x^2-4x+3}=x-2\)
b) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
......................?
mik ko biết
mong bn thông cảm
nha ................
Bài 1 : Cho biểu thức A=\(\left[\frac{2}{3\sqrt{x}}-\frac{2}{\sqrt{x}+1}.\left(\frac{\sqrt{x}+1}{3\sqrt{x}}-\sqrt{x}-1\right)\right]:\frac{\sqrt{x}-1}{\sqrt{x}}\)
a) Rút gọn A (x>0,x \(\ne\)1)
b) Tìm giá trị nguyên của x để A có giá trị nguyên .
Bài 2: Thực hiện phép tính
\(\sqrt{2+2\sqrt{4\sqrt{2}-5}-\sqrt{3-\sqrt{2}}}\)
Thực hiện phép tính:
x+\(\sqrt{\frac{5}{x^2+2x\sqrt{5}+5}}\)
Bài làm:
Ta có: \(x+\sqrt{\frac{5}{x^2+2x\sqrt{5}+5}}\)
\(=x+\frac{\sqrt{5}}{\sqrt{\left(x+\sqrt{5}\right)^2}}\)
\(=x+\frac{\sqrt{5}}{x+\sqrt{5}}\)
\(=\frac{x^2+x\sqrt{5}+\sqrt{5}}{x+\sqrt{5}}\)