(1 -1/4)(1-1/9)(1-1/16)...(1-1/n2)
A=1/4+1/9+1/16+...+1/2024.2024
A=1/4+1/9+1/16+...+1/2024
( 1/2 +1 ) .( 1/3 +1 ) .(1/4+1) ........(1/99+1)
9/13 + 9/16 - 9/23
12/13 +12/16 -12/23
tính
( 1- 1/4 ) . ( 1- 1/9 ) . ( 1 - 1/16 ) . ... . ( 1 - 1/600 )
( 1- 1/4 ) . ( 1- 1/9 ) . ( 1 - 1/16 ) . ... . ( 1 - 1/600 )
( 1- 1/4 ) . ( 1- 1/9 ) . ( 1 - 1/16 ) . ... . ( 1 - 1/600 )
(1-1/4). (1-1/9). 1- (1/16).....(1-1/144)
`= 3/4 . 8/9 . 15/16. ... . 143/144`
`= (1.2.3...12)/(2.3.4....12) . (3.4.....12.13)/(2.3....11.12)`
`= 1/12 . 13/2 = 13/24`
=(1-1/2)(1+1/2)(1-1/3)(1+1/3)*...*(1-1/12)(1+1/12)
=1/2*2/3*...*11/12*3/2*4/3*...*13/12
=1/12*13/2=13/24
rút gọn biểu thức
a) A=16^8 -1/(2+1)(2^2+1)(2^4+1)(2^8+1(3^16+1)
b) B=(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)/9^16-1
giúp mk vs ah mk đang cần gấp ah
a) Ta có: \(A=\dfrac{16^8-1}{\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{\left(2^{16}-1\right)\left(2^{16}+1\right)}\)
\(=\dfrac{2^{32}-1}{2^{32}-1}=1\)
b) Ta có: \(B=\dfrac{\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{9^{16}-1}\)
\(=\dfrac{\left(3^2-1\right)\cdot\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\cdot\left(3^{32}-1\right)}\)
\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\cdot\left(3^{32}-1\right)}\)
\(=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2\left(3^{32}-1\right)}\)
\(=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)}{2\left(3^{32}-1\right)}=\dfrac{1}{2}\)
tính A = (1-1/4)*(1-1/9)*(1-1/16)*(1-1/16)*...(1-1/10000)
Ta có: \(1-\frac{1}{4}=\frac{3}{4}=\frac{1}{2}.\frac{3}{2}\); \(1-\frac{1}{9}=\frac{8}{9}=\frac{2}{3}.\frac{4}{3}\); \(1-\frac{1}{16}=\frac{15}{16}=\frac{3}{4}.\frac{5}{4}\);
...; \(1-\frac{1}{10000}=\frac{9999}{10000}=\frac{99}{100}.\frac{101}{100}\)
=> \(A=\frac{1}{2}.\frac{3}{2}.\frac{2}{3}.\frac{4}{3}.\frac{3}{4}.\frac{5}{4}....\frac{99}{100}.\frac{101}{100}\). Nhận thấy; Tích của 2 số liền kề thì bằng 1
=> \(A=\frac{1}{2}.\frac{101}{100}=\frac{101}{200}\)
Đáp số: \(A=\frac{101}{200}\)
Nhân các đa thức sau:
a) (x + 3)(x - 4);
b) (x - 4)( x 2 + 4x +16);
c) (m n 2 - 1)( m 2 n + 5);
d) 4 x − 1 2 x + 1 2 ( 4 x 2 + 1 ) .
a) x 2 – x – 12 b) x 3 – 64.
c) m 3 n 3 – m 2 n + 5 mn 2 – 5 d) 16 x 4 – 1.