Giải phương trình: \(2(2x^2+6x+5)-\frac{10}{x^2+3x+2}\)
Giải phương trình: \(2(2x^2+6x+5)-\frac{10}{x^2+3x+2}=5\)
Lời giải:
ĐKXĐ: $x\neq -1; x\neq -2$
PT \(\Leftrightarrow 2(2x^2+6x+4)+2-\frac{10}{x^2+3x+2}=5\)
\(\Leftrightarrow 4(x^2+3x+2)-\frac{10}{x^2+3x+2}-3=0\)
Đặt \(x^2+3x+2=a\). Khi đó PT trở thành:
\(4a-\frac{10}{a}-3=0\)
\(\Rightarrow 4a^2-3a-10=0\)
\(\Leftrightarrow (a-2)(4a+5)=0\Rightarrow \left[\begin{matrix} a-2=0\\ 4a+5=0\end{matrix}\right.\)
Nếu \(a-2=0\Leftrightarrow x^2+3x+2-2=0\Leftrightarrow x^2+3x=0\)
\(\Leftrightarrow x(x+3)=0\Rightarrow \left[\begin{matrix} x=0\\ x=-3\end{matrix}\right.\)
Nếu \(4a+5=0\Leftrightarrow 4(x^2+3x+2)+5=0\)
\(\Leftrightarrow 4x^2+12x+13=0\)
\(\Leftrightarrow (2x+3)^2=-4< 0\) (vô lý- loại)
Vậy.........
C1: giải các phương trình sau:
a) 4x +5\(=\)1
b) -5x +2 \(=\)14
c) 6x -3 \(=\)8x +9
d) 7x -5 \(=\)13 -5x
e) 2-3x \(=\) 5x +10
f ) 13 - 7x \(=\) 4x -20
C2: giải các phương trình sau:
a) 2(7x +10) + 5 =3(2x -3) -9x
b) (x+1)(2x-3)=(2x-1)(x+5)
c) 2x + x(x+1)(x-1)= (x+1)(x2 - x +1)
d) (x-1)3 -x(x+1)2 = 5x(2 -x)-11(x+2)
C3: giải các phương trình sau:
a) \(\frac{2\left(x-3\right)}{4}-\frac{1}{2}=\frac{6x+9}{3}-2\)
b) \(\frac{2\left(3x+1\right)+1}{4}-5\frac{2\left(3x-1\right)}{5}-\frac{3x+2}{10}\)
c) \(\frac{x}{3}+\frac{x-2}{4}=0,5x-2,5\)
d) \(\frac{2x-4}{3}-2x=\frac{6x+3}{5}+\frac{1}{15}\)
Giải phương trình :
\(\frac{3x-2}{x+7}=\frac{6x+1}{2x-3}\)
\(\frac{3x-2}{x+7}=\frac{6x+1}{2x-3}\) (Đkxđ: \(x\ne-7;x\ne\frac{3}{2}\))
\(\Rightarrow\left(3x-2\right)\left(2x-3\right)=\left(6x+1\right)\left(x+7\right)\)
\(\Leftrightarrow6x^2-9x-4x+6=6x^2+42x+x+7\)
\(\Leftrightarrow6x^2-9x-4x-6x^2-42x-x=7-6\)
\(\Leftrightarrow-56x=1\)
\(\Leftrightarrow x=-\frac{1}{56}\) (t/m đkxđ)
Vậy \(S=\left\{-\frac{1}{56}\right\}\)
ĐKXĐ: x khác -7 và 3/2
Từ đề bài <=> (3x-2)(2x-3) = (6x+1)(x+7)
<=> 6x^2-4x-9x+6 = 6x^2+x+42x+7
<=> -13x+6 = 43x+7
<=> 6-7 = 43x+13x
<=> 56x = -1
<=> x = -1/56 (TM)
Vậy ...
ĐKXĐ:x khác -7;x khác 1,5
=>(3x-2)(2x-3)=(6x+1)(x+7)
=>6x2-4x-9x+6=6x2+x+42x+7
=>6x2-13x+6=6x2+43x+7
=>6x2-6x2-13x-43x+6-7=0
=>-56x-1=0
=>-56x=1
=>x=\(\frac{-1}{56}\)
giải phương trình(tìm x)
6x2-(2x+5)(3x+7)=7
Giải hệ phương trình: \(\begin{cases}y^3-3y^2-6x+2=\frac{\sqrt{y^3+6x+10}-\sqrt{2y^3-3y^2}}{x^2+2x+2016}\\\sqrt{2x^2-xy+x}=3y-2x-3\end{cases}\)
Giải phương trình \(\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\)
Ta có
\(\left\{{}\begin{matrix}\sqrt{2x^2-4x+3}=\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}=1\\\sqrt{3x^2-6x+7}=\sqrt{3\left(x-1\right)^2+4}\ge\sqrt{4}=2\end{matrix}\right.\) \(\forall x\)
\(\Rightarrow VT=\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}\ge3\) \(\forall x\)
Lại có \(VP=2-x^2+2x=3-\left(x-1\right)^2\le3\) \(\forall x\)
\(\Rightarrow\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\) \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2\left(x-1\right)^2+1}=1\\\sqrt{3\left(x-1\right)^2+4}=2\\3-\left(x-1\right)^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy pt có nghiệm duy nhất \(x=1\)
Giải phương trình: \(\frac{2x}{3x^2-5x+2}+\frac{13x}{3x^2+x+2}=6\)
Nhận thấy \(x=0\) không phải nghiệm, chia cả tử và mẫu vế trái cho x:
\(\frac{2}{3x-5+\frac{2}{x}}+\frac{13}{3x+1+\frac{2}{x}}=6\)
Đặt \(3x-5+\frac{2}{x}=a\)
\(\frac{2}{a}+\frac{13}{a+6}=6\)
\(\Leftrightarrow6a\left(a+6\right)=2\left(a+6\right)+13a\)
\(\Leftrightarrow6a^2+34a-12=0\Rightarrow\left[{}\begin{matrix}a=\frac{1}{3}\\a=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x-5+\frac{2}{x}=\frac{1}{3}\\3x-5+\frac{2}{x}=-6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}3x^2-\frac{16}{3}x+2=0\\3x^2+x+2=0\end{matrix}\right.\)
Giải phương trình: \(\frac{2x}{3x^2-x+2}-\frac{7x}{3x^2+5x+2}=1\)
Giải phương trình
\(\frac{3x+1}{2x^2+3x-2}+\frac{1}{x^2-1}=\frac{1}{x^2+3x}\)