Chứng minh với mọi x ta có:
A) x^ 2 - 4 x + 6 > 1,5
Chứng minh rằng với mọi x, ta có A = (x – 1)(x – 3) + 2 > 0 với mọi x.
\(A=\left(x-1\right)\left(x-3\right)+2=x^2-4x+3+2=\left(x^2-4x+4\right)+1=\left(x-2\right)^2+1\ge1>0\forall x\)
1.chứng minh \(\dfrac{6x^3-x^6}{x^4-2x^2+4}< 3\) với mọi x ∈ R
2.chứng minh \(\dfrac{x^4-4x^2+8}{2x-x^2}>4\) với mọi x ∈ (0;2)
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)
2 = 0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
chứng minh với mọi x,y khác 0 luôn có x^4+y^4< hoặc = x^6/y^2+y^6/x^2
Áp dụng BĐT Cô - si cho 2 số không âm:
\(\frac{x^6}{y^2}+x^2y^2\ge2\sqrt{\frac{x^8y^2}{y^2}}=2x^4\)
\(\frac{y^6}{x^2}+x^2y^2\ge2\sqrt{\frac{y^8x^2}{x^2}}=2y^4\)
Cộng từng các BĐT trên:
\(\frac{x^6}{y^2}+2x^2y^2+\frac{y^6}{x^2}\ge2x^4+2y^4\)
\(\Leftrightarrow\frac{x^6}{y^2}+\frac{y^6}{x^2}\ge x^4+x^4+y^4+y^4-2x^2y^2\)
\(\Leftrightarrow\frac{x^6}{y^2}+\frac{y^6}{x^2}\ge x^4+y^4+\left(x^2-y^2\right)^2\ge x^4+y^4\)
Vậy \(\frac{x^6}{y^2}+\frac{y^6}{x^2}\ge x^4+y^4\)
(Dấu "="\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=-y\end{cases}}\))
chứng minh rằng với mọi x , ta có: A = 4( x - 2) ( x- 1 ) ( x + 4 ) ( x+ 8) + 25x2 >= 0
a) \(\left(x+y\right)^2\ge0\Leftrightarrow x^2+y^2\ge-2xy\Leftrightarrow2\left(x^2+y^2\right)\ge x^2+y^2-2xy\)
\(\Leftrightarrow\frac{x^2+y^2}{2}\ge\frac{\left(x-y\right)^2}{4}\)
Dấu \(=\)khi \(x+y=0\Leftrightarrow x=-y\).
b) \(\frac{x^2+y^2+z^2}{4}\ge2\left(xy+yz+zx\right)\)
Câu này có lẽ bạn sai đề rồi nhé.
Bài 3: (1,5 điểm)
Cho phương trình: x2 – (m + 5)x + 2m + 6 = 0 (x là ẩn số)
a) Chứng minh rằng phương trình trên luôn có hai nghiệm x1, x2 với mọi m.
b) Tìm m để X12 + x22 = 13
a, Ta có:
\(\Delta=\left[-\left(m+5\right)\right]^2-4\left(2m+6\right)\\ =m^2+10m+25-8m-24\\ =m^2+2m+1\\ =\left(m+1\right)^2\ge0\)
Vậy pt luôn có 2 nghiệm x1,x2
b, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=m+5\\x_1x_2=2m+6\end{matrix}\right.\)
\(x^2_1+x^2_2=13\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\\ \Leftrightarrow\left(m+5\right)^2-2\left(2m+6\right)=13\\ \Leftrightarrow m^2+10m+25-4m-12-13=0\\ \Leftrightarrow m^2+6m=0\\ \Leftrightarrow m\left(m+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=-6\end{matrix}\right.\)
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2 =0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| < |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Chứng minh rằng: Với mọi x, y ϵ R ta có: \(\dfrac{x^2}{1+16x^4}+\dfrac{y^2}{1+16y^4}\le\dfrac{1}{4}\)
Áp dụng BĐT Cosi:
\(\dfrac{x^2}{1+16x^4}+\dfrac{y^2}{1+16y^4}\le\dfrac{x^2}{8x^2}+\dfrac{y^2}{8y^2}=\dfrac{1}{4}\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=\pm\dfrac{1}{2}\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)