cho a và b \(\inℤ\),b>0. So sánh 2 số hữu tỉ \(\frac{a}{b}\)và\(\frac{a+2019}{b+2019}\)
So sánh 2 số hữu tỉ. Cho a,b ∈ z \(\frac{a}{b}\) và \(\frac{a+2019}{b+2019}\)
TH1: a < b
=> 2019a < 2019b
=> ab + 2019a < ab+ 2019b
=> a(b+2019) < b(a+2019)
=> a/b < (a+2019)/(b+2019)
TH2: a = b
=> a/b = (a+2019)/(b+2019)
TH3: a > b
=> ab + 2019a > ab+ 2019b
=> a(b+2019) > b(a+2019)
=> a/b > (a+2019)/(b+2019)
đúng ko moonshine
đầu tiên: a < b
=> 2019a < 2019b
=> ab + 2019a < ab+ 2019b
=> a(b+2019) < b(a+2019)
=> a/b < (a+2019)/(b+2019)
2: a = b
=> a/b = (a+2019)/(b+2019)
3: a > b
=> ab + 2019a > ab+ 2019b
=> a(b+2019) > b(a+2019)
=> a/b > (a+2019)/(b+2019)
TH1: a < b
=> 2019a < 2019b
=> ab + 2019a < ab + 2019b
=> a (b + 2019) < b (a + 2019)
=> \(\frac{a}{b}\) < \(\frac{a+2019}{b+2019}\).
TH2: a = b
=> \(\frac{a}{b}\) = \(\frac{a+2019}{b+2019}\).
TH3: a > b
=> ab + 2019a > ab + 2019b
=> a (b + 2019) > b (a + 2019)
=> \(\frac{a}{b}\) > \(\frac{a+2019}{b+2019}\).
Chúc bạn học tốt!
Cho A=\(\frac{2018^{2018}}{2019^{2019}}\) Và B=\(\frac{2018^{2018}+2018}{2019^{2019}+2019}\) So sánh A và B
So sánh A và B biết:
\(A=\frac{10^{2019}+2}{10^{2019}-3};B=\frac{10^{2019}-2}{10^{2019}-7}\)
Cho A= \(\frac{2^{2018}}{2^{2018}+3^{2019}}+\frac{3^{2019}}{3^{2019}+5^{2020}}+\frac{5^{2020}}{5^{2020}+2^{2018}}\)
và B= \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{2019.2010}\)
So sánh A và B
Cho a,b là hai số nguyên dương và a<b. Hãy so sánh \(\frac{a}{b}\)và \(\frac{a+1}{b+1}\)
Áp dụng hãy so sánh: \(\frac{2^{2018}}{3^{2019}}\)và \(\frac{2^{2018}+1}{3^{2019}+1}\)
(Bài này là bài nâng cao, giúp mình giải với nha, thanks)
Có \(a\left(b+1\right)< b\left(a+1\right)\Leftrightarrow ab+a< ab+b\)
\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)
Áp dụng \(\frac{2^{2018}}{3^{2019}}< \frac{2^{2018}+1}{3^{2019}+1}\)
Ta có:
\(1-\frac{a}{b}=\frac{b-a}{b}\)
\(1-\frac{a+1}{b+1}=\frac{b+1-a-1}{b+1}=\frac{b-a}{b+1}\)
Vì b < b + 1 và a < b; a, b nguyên dương => b - a > 0 nên \(\frac{b-a}{b}>\frac{b-a}{b+1}\)
Do đó \(1-\frac{a}{b}>1-\frac{a+1}{b+1}\)
\(\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\)
Áp dụng chứng minh tương tự nhé bạn
Cho A=\(\frac{2^{2018}}{2^{2018}+3^{2019}}+\frac{3^{2019}}{3^{2019}+5^{2020}}+\frac{5^{2020}}{5^{2020}+2^{2018}}\)
B= \(\frac{1}{1.2}+\frac{1}{3.4}+.....+\frac{1}{2019.2020}\)
So sánh A và B
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1.\)
Với : \(a=2^{2018};.b=3^{2019};,c=5^{2020}.\)
Và : \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\Leftrightarrow\)
\(B=1-\frac{1}{2020}< 1< A\)
Câu 1: Cho A.= \(\frac{7^{2018}+1}{7^{2019}+1}\)Và B=\(\frac{7^{2019}+1}{7^{2019}+1}\)
So sánh A và B
\(A=\frac{7^{2018}+1}{7^{2019}+1}\)
\(\Rightarrow7A=\frac{7^{2019}+7}{7^{2019}+1}=1+\frac{6}{7^{2019}+1}\)
\(B=\frac{7^{2019}+1}{7^{2020}+1}\)
\(\Rightarrow7B=\frac{7^{2020}+7}{7^{2020}+1}\)
\(\Rightarrow7B=1+\frac{6}{7^{2020}+1}\)
Vì 7 ^ 2019 < 7 ^ 2020 => 7 ^ 2019 + 1 < 7 ^ 2020 + 1
=> 6 / ( 7 ^ 2019 + 1 ) > 6 / ( 7 ^ 2020 + 1 )
=> 1 + 6 / ( 7 ^ 2019 + 1 ) > 1 + 6 / ( 7 ^ 2020 + 1 )
=> 7A > 7B
Vì A , B > 0
Nên A > B
Vì \(7^{2018}< 7^{2019}\)nên \(7^{2018}+1< 7^{2019}+1\)
\(\Rightarrow\frac{7^{2018}+1}{7^{2019}+1}< \frac{7^{2019}+1}{7^{2019}+1}\)
Hay A < B
Chúc bạn học tốt ! Nguyễn Thi An Na
So sánh A và B mà ko quy đồng
\(A=\frac{-9}{2019}+\frac{-19}{2019}\)
Và \(B=\frac{-9}{10^{2019}}+\frac{-19}{10^{2018}}\)
Ta có thể thấy rõ: \(2019< 10^{2019};2019< 10^{2018}\)
\(\Rightarrow-\frac{9}{2019}>-\frac{9}{10^{2019}};-\frac{19}{2019}>-\frac{19}{10^{2018}}\)(do tử là số âm nên mẫu càng lớn thì cả pso càng nhỏ)
\(\Rightarrow-\frac{9}{2019}+\frac{-19}{2019}>-\frac{9}{10^{2019}}+\frac{-19}{10^{2018}}\)
Hay A>B
Chúc bn hok tốt,nhớ k nha
So sánh \(\frac{a}{b}\)và \(\frac{a+2019}{b+2019}\)với a,b thuộc Z, b>0
MK làm rồi mà k bt đúng hay sai. Giúp mk với
Vì b > 0 => b + 2019 > 0
Ta có: \(\frac{a}{b}=\frac{a.\left(b+2019\right)}{b.\left(b+2019\right)}=\frac{a.b+a.2019}{b.\left(b+2019\right)}=\frac{a+2019}{b+2019}=\)
\(\frac{b.\left(a+2019\right)}{b.\left(b+2019\right)}=\frac{a.b+b.2019}{b.\left(b+2019\right)}\)
TH1: Nếu a < b => \(\frac{a.b+a.2019}{b.\left(b+2019\right)}< \frac{a.b+b.2019}{b.\left(b+2019\right)}\)
hay \(\frac{a}{b}< \frac{a+2019}{b+2019}\)
TH2: Nếu a = b => \(\frac{a.b+a.2019}{b.\left(b+2019\right)}=\frac{a.b+b.2019}{b.\left(b+2019\right)}\)
hay \(\frac{a}{b}=\frac{a+2019}{b+2019}\)
TH3: Nếu a > b => \(\frac{a.b+a.2019}{b.\left(b+2019\right)}>\frac{a.b+b.2019}{b.\left(b+2019\right)}\)
hay \(\frac{a}{b}=\frac{a+2019}{b+2019}\)
Xét tích : \(a(b+2019)=ab+2019a\)
\(b(a+2019)=ab+2019b\)
Vì b > 0 nên b + 2019 > 0
Nếu a > b thì \(ab+2019a>ab+2019b\)
\(a(b+2019)>b(a+2019)\)
\(\Rightarrow\frac{a}{b}>\frac{a+2019}{b+2019}\)
Nếu a < b thì \(ab+2019a< ab+2019b\)
\(a(b+2019)< b(a+2019)\)
\(\Rightarrow\frac{a}{b}< \frac{a+2019}{b+2019}\)
Nếu a = b thì rõ ràng \(\frac{a}{b}=\frac{a+2019}{b+2019}\)