Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Thị Thu Trang
Xem chi tiết
Trương Nguyễn Tú Anh
Xem chi tiết
Upin & Ipin
19 tháng 8 2020 lúc 16:53

Ap dung cong thuc \(\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}=1+\frac{1}{a}-\frac{1}{a+1}\) 

ta co \(E=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+...+1+\frac{1}{2005}-\frac{1}{2006}=2004+\frac{1}{2}-\frac{1}{2006}\)

Khách vãng lai đã xóa
FL.Hermit
19 tháng 8 2020 lúc 13:41

Ta có: 

 \(E=\sqrt{\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{\left(-3\right)^2}}+\sqrt{\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{\left(-4\right)^2}}+...+\sqrt{\frac{1}{1^2}+\frac{1}{2005^2}+\frac{1}{\left(-2006\right)^2}}\)

DO:   \(1+2+\left(-3\right)=0;1+3+\left(-4\right)=0;...;1+2005+\left(-2006\right)=0\)

=> TA ĐƯỢC:    \(E=\sqrt{\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{-3}\right)^2}+\sqrt{\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{-4}\right)^2}+...+\sqrt{\left(\frac{1}{1}+\frac{1}{2005}+\frac{1}{-2006}\right)^2}\)

=>   \(E=\frac{1}{1}+\frac{1}{2}-\frac{1}{3}+\frac{1}{1}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1}+\frac{1}{2005}-\frac{1}{2006}\)

=>   \(E=\left(\frac{1}{1}+\frac{1}{1}+...+\frac{1}{1}\right)+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2005}-\frac{1}{2006}\right)\)

DO TRONG E CÓ TẤT CẢ 2004 CĂN THỨC

=>   \(E=2004+\frac{1}{2}-\frac{1}{2006}=2004+\frac{501}{1003}=\frac{2010513}{1003}\)

Khách vãng lai đã xóa
Ngô Thị Thu Trang
Xem chi tiết
Đinh Nguyễn Nguyệt Hà
Xem chi tiết
Trần Thị Loan
1 tháng 8 2015 lúc 16:13

\(VT=\frac{2\left(\sqrt{2}-\sqrt{1}\right)}{3.\left(2-1\right)}+\frac{2\left(\sqrt{3}-\sqrt{2}\right)}{5\left(3-2\right)}+...+\frac{2\left(\sqrt{2006}-\sqrt{2005}\right)}{4011\left(2006-2005\right)}\)

\(VT=\frac{2\left(\sqrt{2}-\sqrt{1}\right)}{3}+\frac{2\left(\sqrt{3}-\sqrt{2}\right)}{5}+...+\frac{2\left(\sqrt{2006}-\sqrt{2005}\right)}{4011}\)

Nhận xét: (a-b)2 \(\ge\) 0 => a2 + b2  \(\ge\) 2ab

Áp dụng ta có: \(3=\left(\sqrt{2}\right)^2+\left(\sqrt{1}\right)^2\ge2.\sqrt{2}.\sqrt{1}\)

\(5=\left(\sqrt{3}\right)^2+\left(\sqrt{2}\right)^2\ge2.\sqrt{3}.\sqrt{2}\)

...

\(4011=\left(\sqrt{2006}\right)^2+\left(\sqrt{2005}\right)^2\ge2.\sqrt{2006}.\sqrt{2005}\)

=> \(VT

Siêu koll
Xem chi tiết
Cầm Dương
Xem chi tiết
Huỳnh Trần Thảo Nguyên
Xem chi tiết
tth_new
12 tháng 5 2019 lúc 9:39

Có lẽ là làm như vầy ạ:

Ta thấy số hạng tổng quát của tổng có dạng \(\frac{1}{\sqrt{n}+\sqrt{n+1}}\) với n là số tự nhiên thỏa mãn: \(1< n< 2006\)

Ta có: \(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)(áp dụng hằng đẳng thức : a2 - b2 = (a-b)(a+b) vào cái mẫu)

Do vậy: \(S=\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{2005}+\sqrt{2006}}\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2005}-\sqrt{2004}+\sqrt{2006}-\sqrt{2005}\)

\(=-\sqrt{2}+\left(\sqrt{3}-\sqrt{3}\right)+...+\left(\sqrt{2005}-\sqrt{2005}\right)+\sqrt{2006}\) (gom hết các số hạng giống nhau bỏ vô ngoặc)

\(=\sqrt{2006}-\sqrt{2}\)

Vậy \(S=\sqrt{2006}-\sqrt{2}\)

tth_new
12 tháng 5 2019 lúc 9:44

Bài lớp 9 này hơi quá trình độ lớp 7 của em (có gì sai sót xin thông cảm cho ạ)!

Bùi Khắc Tuấn Khải
Xem chi tiết
Thanh Huong
Xem chi tiết
Son Goku
6 tháng 1 2018 lúc 23:04

hihi cho mình đi