Giải phương trình nghiệm nguyên: \(x^2+2y^2-2xy+4x-3y-26=0\)
Giải phương trình nghiệm nguyên:\(x^2+2y^2-2xy+4x-3y-26=0\)
Giải phương trình nghiệm nguyên
a) \(x^2+2y^2-2xy+4x-3y-26=0\)
b) \(x^2+3y^2+2xy-2x-4y-3=0\)
c) \(2x^2+y^2+3xy+3x+2y+2=0\)
d) \(3x^2-y^2-2xy-2x-2y+8=0\)
Giải phương trình nghiệm nguyên: \(x^2+2y^2-2xy+4x-3y-26=0\).
Dùng hằng đẳng thức ko được đành phải dùng delta thôi ạ :((
Viết lại thành pt bậc 2 đối với x:
\(x^2+2x\left(2-y\right)+\left(2y^2-3y-26\right)=0\) (1)
Để pt có nghiệm thì \(\Delta'=\left(2-y\right)^2-\left(2y^2-3y-26\right)\ge0\)
\(\Leftrightarrow-y^2-y+30\ge0\Leftrightarrow-6\le y\le5\)
Super ez :D Nhưng đúng hay ko là một chuyện khác ạ:)
Đưa về pt bậc 2 ẩn x
\(x^2+2y^2-2xy+4x-3y-26=0\)
\(\Leftrightarrow\)\(x^2 + (4-2y)x + 2y^2-3y-26=0\)
\(\Delta=b^2-4ac=\left(4-2y\right)^2-4\left(2y^2-3y-26\right)\)
\(=16-16y+4y^2-8y^2+12y+104\)
\(=-4y^2-4y+120\)
Để phương trình có nghiệm nguyên thì \(\Delta\ge0\)
\(\Leftrightarrow-4y^2-4y+120\ge0\)
\(\Leftrightarrow-y^2-y+30\ge0\)
\(\Leftrightarrow y^2+y-30\ge0\)
\(\Leftrightarrow\left(y+6\right)\left(y-5\right)\ge0\)
\(\Leftrightarrow-6\le x\le5\)
Thay các giá trị của x rồi tìm y
Giải phương trình nghiệm nguyên: x^2 + 2xy + 2x + 2y - 3y^2 = 4
giải phương trình nghiệm nguyên 3x^2+3xy+3y^2=x+8y
giải phương trình nghiệm nguyên 2x^2+3y^2-5xy+3x-2y-3=0
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
tìm nghiệm nguyên của phương trình: x^2 - 2xy + 4x - 3y + 1 = 0
Tìm nghiệm nguyên cua phương trình: \(x^2+2y^2+2xy+3y-4=0\)
\(x^2+2xy+y^2+3y-4=0\)
\(\Rightarrow\Delta'=y^2-\left(2y^2+3y-4\right)\ge0\)
\(\Leftrightarrow-4\le y\le1\)
\(\left(x+y\right)^2+\left(y-\frac{3}{2}\right)^2=4\)
mà 4=0^2+2^2
=>\(\orbr{\begin{cases}\hept{\begin{cases}x+y=0\\y-\frac{3}{2}=2\end{cases}}\\\hept{\begin{cases}x+y=2\\y-\frac{3}{2}=0\end{cases}}\end{cases}}\)
=> giải nốt
\(x^2+2y^2+2xy+3y-4=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(y^2+3y+\frac{9}{4}\right)-\frac{25}{4}=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(y+\frac{3}{2}\right)^2=\frac{25}{4}\)
\(\Leftrightarrow\left(2x+2y\right)^2+\left(2y+3\right)^2=25\)
Ta có 4 trường hợp:
TH1: \(\hept{\begin{cases}2x+2y=0\\2y+3=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
TH2: \(\hept{\begin{cases}2x+2y=0\\2y+3=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=-4\end{cases}}\)
TH3: \(\hept{\begin{cases}2x+2y=4\\2y+3=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=-3\end{cases}}\)
TH4: \(\hept{\begin{cases}2x+2y=4\\2y+3=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)
TH5: \(\hept{\begin{cases}2x+2y=-4\\2y+3=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
TH6: \(\hept{\begin{cases}2x+2y=-4\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=0\end{cases}}\)