6. CMR \(B=2^{2^{2n+1}}+3\) là hợp số với mọi số nguyên dương n
CMR:\(2^{2^{2n-1}}+3\) là hợp số với mọi số nguyên dương n
vì n là số nguyên dương nên suy ra : 2n -1 là số nguyên dương
suy ra 2^ 2n-1 nguyên dương
suy ra 2^2^2n-1 nguyên dương
mà 3 là số nguyên dương
suy ra 2^2^2n-1 + 3 là số nguyên dương ( dpcm)
cmr: với mọi số nguyên dương n thì
n^4+2n^3+2n^2+2n+1 không thể là một số chính phương
cmr với mọi số nguyên dương
6^2n+19^n-2^n+1 chia hết cho17
6^(2n) +19^n-2^n+1 = 36^n + 19^n - 2^n +1
với n = 1 thì 36^n + 19^n - 2^n +1 ko chia hết cho 17
36 chia 17 dư 2 => 36^n chia 17 dư 2^n
19 chia 17 dư 2 => 19^n chia 17 dư 2^n
=> 36^n + 19^n - 2^n +1 chia 17 dư 2^n +1
vậy 36^n + 19^n - 2^n +1 chưa chắc đã chia hết cho 17 với mọi n
xem lại đề đi bạn
c) 16^n-15n-1 chia hết cho 225
n = 1 và n = 2 thì 16^n-15n-1 chia hết cho 225
giả sử điều trên đúng với n = k
ta cần chứng minh điều đó đúng với n = k+1
tức là với n = k+1 thì 16^(k+1)-15(k+1)-1 chia hết cho 225
thật vậy:
16^(k+1)-15(k+1) -1 = 16.16^k -16.15k - 16 + 15.15k = 16(16^k - 15k -1) + 225.k
ta có: 16^k-15k-1 chia hết cho 225 mà 225k chia hết cho 225
=>16^(k+1)-15(k+1)-1 chia hết cho 225
đpcm
Chứng minh rằng \(B=2^{2^{2n+1}}+3\)là hợp số với mọi số nguyên dương n
CMR: 3n+11 và 3n+2 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n. Tìm số tự nhiên n biết:
a, n+15 ≤ n-6
b, 2n+15 ⋮ 2n+3
c, 6n+9 ⋮ 2n+1
CMR với mọi số nguyên dương n thì (n+1)(n+2)(n+3).....(2n) chia hết cho 2^n
Mọi người tk mình đi mình đang bị âm nè!!!!!!
Ai tk mình mình tk lại nha !!!
CMR: Với mọi số nguyên dương n thì (n+1)(n+2)(n+3).....(2n) chia hết cho 2n
với n = 1 có : ( 1 + 1 ) chia hết cho 2
giả sử, với n = k thì ( k + 1 ) ( k + 2 ) ... 2k \(⋮\)2k
cần chứng minh đúng với n = k + 1
tức là ( k + 1 + 1 ) ( k + 1 + 2 ) ... 2 (k + 1 ) \(⋮\)2k+1
Ta có : ( k + 1 + 1 ) ( k + 1 + 2 ) ... 2 (k + 1 ) = ( k + 2 ) ( k + 3 ) ... 2k .2 ( k + 1 )
= 2 ( k + 1 ) ( k + 2 ) ... 2k \(⋮\)2.2k = 2k+1
vậy ta có đpcm
Chứng minh rằng A=22^2n+1 + 3 là hợp số với mọi số nguyên dương n
với n = 0 thì số này = 7, n = 1,thi = 259 chia hết cho 7 nên có thể quy nạp để cm nó chia hết cho 7.còn không thì ta có 2^n = 1 (mod 3) => 2^2n+1 = 2 (mod 3) => 2^2n+1 = 3t + 2; mặt khác ta có:
2^3 = 1 (mod 7) nên => 2^(3t+2) = 4 mod(7) => (2^2^2n+1)+3 chia hết cho 7.-> mọi số nguyên dương n
ko rõ nhưng thử tham khảo nhé
hok tốt#
CMR: 3n+11 và 3n+2 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n. Tìm số tự nhiên n biết:
a, n+15≤n-6
b, 2n+15 ⋮ 2n+3
c, 6n+9 ⋮ 2n+1
Bài 1: Gọi d=ƯCLN(3n+11;3n+2)
=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)
=>\(3n+11-3n-2⋮d\)
=>\(9⋮d\)
=>\(d\in\left\{1;3;9\right\}\)
mà 3n+2 không chia hết cho 3
nên d=1
=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau
Bài 2:
a:Sửa đề: \(n+15⋮n-6\)
=>\(n-6+21⋮n-6\)
=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)
mà n>=0
nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)
b: \(2n+15⋮2n+3\)
=>\(2n+3+12⋮2n+3\)
=>\(12⋮2n+3\)
=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)
mà n là số tự nhiên
nên n=0
c: \(6n+9⋮2n+1\)
=>\(6n+3+6⋮2n+1\)
=>\(2n+1\inƯ\left(6\right)\)
=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;1\right\}\)