Tìm x:
\(\sqrt{4x^2-4x+1}+\sqrt{2x-1}=0\)với \(x\ge\frac{1}{2}\)
Tìm x, biết:
a. \(\sqrt{6-4x+x^2}-x=4\)
b. \(\sqrt{4x^2-4x+1}+\sqrt{2x-1}=0\)với \(x\ge\frac{1}{2}\)
a) ĐKXĐ: \(x\ge-4\)
a) Ta có: \(\sqrt{6-4x+x^2}=x+4\Rightarrow\left(x+4\right)^2=x^2-4x+6\)
\(\Rightarrow x^2+8x+16=x^2-4x+6\Rightarrow4x+10=0\Rightarrow x=-\frac{5}{2}\left(loại\right)\)
Vậy pt vô nghiệm
b) \(\sqrt{4x^2-4x+1}+\sqrt{2x-1}=0\Rightarrow\sqrt{\left(2x-1\right)^2}+\sqrt{2x-1}=0\)
\(\Leftrightarrow\sqrt{2x-1}\left(\sqrt{2x-1}+1\right)=0\Rightarrow x=\frac{1}{2}\)
1.Rút gọn các biểu thức
a)\(x-1-\sqrt{x^2-x+1}\) với x ≥1
b) \(\frac{\sqrt{4x^2-4x+1}}{2x-1}\) với x < \(\frac{1}{2}\)
c) /x/ + \(\frac{x}{\sqrt{x^2}}\) với x >0
d) \(\sqrt{x^2+8x+16}+\sqrt{\left(x-2\right)^2}\) với -43x<2
Rút gọn các biểu thức sau:
a,\(\sqrt{16a^2}\) - 5a với a ≥ 0
b, 3x + 2 - \(\sqrt{9x^2+6x+1}\) với x ≥ \(\frac{1}{3}\)
c,\(\sqrt{8+2\sqrt{7}}\) - \(\sqrt{7}\)
d,\(\sqrt{14-2\sqrt{13}}\) + \(\sqrt{14+2\sqrt{13}}\)
e, 2x - \(\sqrt{4x^2-4x+1}\) với x > \(\frac{1}{2}\)
g, |x-2| + \(\frac{\sqrt{x^2-4x+4}}{x-2}\) với x > 2
Lời giải:
Bạn cứ nhớ công thức $\sqrt{x^2}=|x|$, rồi dùng điều kiện đề bài để phá dấu trị tuyệt đối là được
a)
\(\sqrt{16a^2}-5a=\sqrt{(4a)^2}-5a=|4a|-5a=4a-5a=-a\)
b)
\(3x+2-\sqrt{9x^2+6x+1}=3x+2-\sqrt{(3x)^2+2.3x.1+1^2}\)
\(=3x+2-\sqrt{(3x+1)^2}=3x+2-|3x+1|=3x+2-(3x+1)=1\)
c)
\(\sqrt{8+2\sqrt{7}}-\sqrt{7}=\sqrt{7+1+2.\sqrt{7}.\sqrt{1}}-\sqrt{7}\)
\(=\sqrt{(\sqrt{7}+1)^2}-\sqrt{7}=|\sqrt{7}+1|-\sqrt{7}=\sqrt{7}+1-\sqrt{7}=1\)
d)
\(\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}=\sqrt{13+1-2\sqrt{13}}+\sqrt{13+1+2\sqrt{13}}\)
\(=\sqrt{(\sqrt{13}-1)^2}+\sqrt{(\sqrt{13}+1)^2}=|\sqrt{13}-1|+|\sqrt{13}+1|\)
\(=\sqrt{13}-1+\sqrt{13}+1=2\sqrt{13}\)
e)
\(2x-\sqrt{4x^2-4x+1}=2x-\sqrt{(2x-1)^2}=2x-|2x-1|=2x-(2x-1)=1\)
g)
\(|x-2|+\frac{\sqrt{x^2-4x+4}}{x-2}=|x-2|+\frac{\sqrt{(x-2)^2}}{x-2}=|x-2|+\frac{|x-2|}{x-2}\)
\(=(x-2)+\frac{(x-2)}{x-2}=x-2+1=x-1\)
Giair phương trình:\(\sqrt{x^2-\frac{1}{4x}}+\sqrt{x-\frac{1}{4x}}=x\) với điều kiện \(x\ge\frac{\sqrt[3]{2}}{2}\)
Bài 1 : Cho biểu thức : A = 2x + \(\frac{\sqrt{9x^2-6x+1}}{1-3x}\)
a. Rút gọn A
b.Tính giá trị A khi x = -3
Bài 2 : Rút gọn :
a. \(\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}\)(với a \(\ge\)1)
b. \(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\)(với \(\frac{1}{4}< x< \frac{1}{2}\))
Bài 3 : Giải PT:
\(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\)= \(\sqrt{6}\)
câu 1: lập bảng xét dấu để tìm nghiệm của bất pt sau:
a/\(4x^2-5x+1\ge0\)
b/\(3x^2-4x+1\le0\)
câu 2:
a/\(|x^2-3x+2|\le8-2x\)
b/\(x^2-5x+\sqrt{x\left(5-x\right)}+2< 0\)
c/\(\sqrt{8+2x-x^2}>6-3x\)
d/\(2\sqrt{1-\frac{2}{x}}+\sqrt{2x-\frac{8}{x}}\ge x\)
e/\(|x^2-4x+3|>2x-3\)
f/\(\sqrt{-x^2+6x-5}\le8-2x\)
g/\(x^2-8x-\sqrt{x\left(x-8\right)}< 6\)
h/\(3\sqrt{1-\frac{3}{x}}+\sqrt{3x-\frac{27}{x}}\ge x\)
giải bpt:
1. \(\frac{\sqrt{-3x^2+x+4}+2}{x}< 2\)
2. \(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}\ge2\sqrt{x^2-5x+4}\)
3. \(\sqrt{x^2-8x+15}+\sqrt{x^2+2x-15}\le\sqrt{4x^2-18x=18}\)
4. 4(x+1)2 \(\ge\) (2x +10)( 1- \(\sqrt{3+2x}\))2
5. \(\sqrt{1+x}-\sqrt{1-x}\ge x\)
Rút gọn:
a,\(\sqrt{4x^2-4x+1}-2x+3\) (x≥\(\frac{1}{2}\))
b,B=\(\sqrt{\frac{3\sqrt{5}+1}{2\sqrt{5}-3}}\left(\sqrt{10}-\sqrt{2}\right)\)
a.\(\sqrt{\left(2x-1\right)^2}-2x+3\)
\(=2x-1-2x+3=2\)(vì x\(\ge\)1/2 nên 2x-1\(\ge\)0)
b.\(B=\sqrt{\frac{\left(3\sqrt{5}+1\right)\left(2\sqrt{5}+3\right)}{\left(2\sqrt{5}-3\right)\left(2\sqrt{5}+3\right)}}\left(\sqrt{10}-\sqrt{2}\right)\)
\(=\sqrt{\frac{33+11\sqrt{5}}{11}}\left(\sqrt{10}-\sqrt{2}\right)=\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)
\(=\sqrt{6+2\sqrt{5}}\left(\sqrt{5}-1\right)=\sqrt{\left(\sqrt{5}+1\right)^2}\left(\sqrt{5}-1\right)\)
\(=\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)=4\)
1. Chứng minh rằng: \(\frac{2x^2+1}{\sqrt{4x^2+1}}\ge1\)
2. Tìm GTLN: A=\(\frac{1}{x-\sqrt{x}+1}\left(x>0\right)\)
3. Đưa thừa số ra ngoài dấu căn
B= \(\frac{1}{2x-1}\sqrt{5\left(1-4x+4x^2\right)}\)