Rút gọn các biểu thức sau:
a,\(\sqrt{16a^2}\) - 5a với a ≥ 0
b, 3x + 2 - \(\sqrt{9x^2+6x+1}\) với x ≥ \(\frac{1}{3}\)
c,\(\sqrt{8+2\sqrt{7}}\) - \(\sqrt{7}\)
d,\(\sqrt{14-2\sqrt{13}}\) + \(\sqrt{14+2\sqrt{13}}\)
e, 2x - \(\sqrt{4x^2-4x+1}\) với x > \(\frac{1}{2}\)
g, |x-2| + \(\frac{\sqrt{x^2-4x+4}}{x-2}\) với x > 2
Lời giải:
Bạn cứ nhớ công thức $\sqrt{x^2}=|x|$, rồi dùng điều kiện đề bài để phá dấu trị tuyệt đối là được
a)
\(\sqrt{16a^2}-5a=\sqrt{(4a)^2}-5a=|4a|-5a=4a-5a=-a\)
b)
\(3x+2-\sqrt{9x^2+6x+1}=3x+2-\sqrt{(3x)^2+2.3x.1+1^2}\)
\(=3x+2-\sqrt{(3x+1)^2}=3x+2-|3x+1|=3x+2-(3x+1)=1\)
c)
\(\sqrt{8+2\sqrt{7}}-\sqrt{7}=\sqrt{7+1+2.\sqrt{7}.\sqrt{1}}-\sqrt{7}\)
\(=\sqrt{(\sqrt{7}+1)^2}-\sqrt{7}=|\sqrt{7}+1|-\sqrt{7}=\sqrt{7}+1-\sqrt{7}=1\)
d)
\(\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}=\sqrt{13+1-2\sqrt{13}}+\sqrt{13+1+2\sqrt{13}}\)
\(=\sqrt{(\sqrt{13}-1)^2}+\sqrt{(\sqrt{13}+1)^2}=|\sqrt{13}-1|+|\sqrt{13}+1|\)
\(=\sqrt{13}-1+\sqrt{13}+1=2\sqrt{13}\)
e)
\(2x-\sqrt{4x^2-4x+1}=2x-\sqrt{(2x-1)^2}=2x-|2x-1|=2x-(2x-1)=1\)
g)
\(|x-2|+\frac{\sqrt{x^2-4x+4}}{x-2}=|x-2|+\frac{\sqrt{(x-2)^2}}{x-2}=|x-2|+\frac{|x-2|}{x-2}\)
\(=(x-2)+\frac{(x-2)}{x-2}=x-2+1=x-1\)