Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoai Bao Tran
Xem chi tiết
Akai Haruma
27 tháng 6 2020 lúc 0:46

Bạn tham khảo lời giải tại đây:

Câu hỏi của Nguyễn Xuân Đình Lực - Toán lớp 9 | Học trực tuyến

Nguyễn Xuân Đình Lực
Xem chi tiết
Akai Haruma
27 tháng 6 2020 lúc 0:45

Lời giải:

Ba số thực $a,b,c$ cần có thêm điều kiện không âm mới đúng.

BĐT cần chứng minh tương đương với:

$ab^3+bc^3+ca^3+2abc(a+b+c)\leq a^3b+b^3c+c^3a+ab^3+bc^3+ca^3+abc(a+b+c)$

$\Leftrightarrow abc(a+b+c)\leq a^3b+b^3c+c^3a(*)$

Áp dụng BĐT Bunhiacopxky:

$(a^3b+b^3c+c^3a)(abc^2+bca^2+cab^2)\geq (a^2bc+b^2ca+c^2ab)^2$

$\Rightarrow a^3b+b^3c+c^3a\geq abc(a+b+c)$

BĐT $(*)$ đúng nên ta có đpcm.

Dấu "=" xảy ra khi $a=b=c$

tthnew
4 tháng 7 2020 lúc 10:04

SOS là ra, khá đơn giản. Ta có:

$$\text{VP}-\text{VT}=ab \left( -c+a \right) ^{2}+ca \left( b-c \right) ^{2}+cb \left( a-b
\right) ^{2}\geqq 0.$$

Đẳng thức xảy ra khi $a=b=c.$

Nguyễn Xuân Đình Lực
Xem chi tiết
Phùng Minh Quân
27 tháng 6 2020 lúc 19:33

a,b,c>0 

\(VP-VT=a^3b+b^3c+c^3a-abc\left(a+b+c\right)=abc\Sigma\frac{\left(a-b\right)^2}{a}\ge0\)

Khách vãng lai đã xóa
Nguyễn Thiều Công Thành
Xem chi tiết
Hoàng Bình Minh
Xem chi tiết
Lê Huỳnh
Xem chi tiết
Phước Nguyễn
26 tháng 3 2016 lúc 11:22

Đặt  \(A=\frac{c\left(ab+1\right)^2}{b^2\left(bc+1\right)}+\frac{a\left(bc+1\right)^2}{c^2\left(ca+1\right)}+\frac{b\left(ca+1\right)^2}{a^2\left(ab+1\right)}\)  và   \(x=ab+1;\)  \(y=bc+1;\)  \(z=ca+1\)   \(\left(\text{*}\right)\)

Khi đó, với các giá trị tương ứng trên thì biểu thức  \(A\)  trở thành:   \(A=\frac{cx^2}{b^2y}+\frac{ay^2}{c^2z}+\frac{bz^2}{a^2x}\)

Áp dụng bất đẳng thức Cauchy cho bộ ba phân số không âm của biểu thức trên (do  \(a,b,c>0\)), ta có:

 \(A=\frac{cx^2}{b^2y}+\frac{ay^2}{c^2z}+\frac{bz^2}{a^2x}\ge3\sqrt[3]{\frac{cx^2}{b^2y}.\frac{ay^2}{c^2z}.\frac{bz^2}{a^2z}}=3\sqrt[3]{\frac{xyz}{abc}}\)  \(\left(\text{**}\right)\)

Mặt khác, do  \(ab+1\ge2\sqrt{ab}\)  (bất đẳng thức  AM-GM cho hai số \(a,b\) luôn dương)

              nên   \(x\ge2\sqrt{ab}\)  \(\left(1\right)\) (theo cách đặt ở  \(\left(\text{*}\right)\))

Hoàn toàn tương tự với vòng hoán vị   \(a\)  \(\rightarrow\)  \(b\)  \(\rightarrow\)  \(c\) và với chú ý cách đặt ở \(\left(\text{*}\right)\), ta cũng có:

\(y\ge2\sqrt{bc}\)  \(\left(2\right)\)  và  \(z\ge2\sqrt{ca}\)  \(\left(3\right)\)

Nhân từng vế  \(\left(1\right);\)  \(\left(2\right)\)  và  \(\left(3\right)\), ta được  \(xyz\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=8abc\)

Do đó,  \(3\sqrt[3]{\frac{xyz}{abc}}\ge3\sqrt[3]{\frac{8abc}{abc}}=3\sqrt[3]{8}=6\)  \(\left(\text{***}\right)\)  

Từ  \(\left(\text{**}\right)\)  và  \(\left(\text{***}\right)\)  suy ra được   \(A\ge6\), tức  \(\frac{c\left(ab+1\right)^2}{b^2\left(bc+1\right)}+\frac{a\left(bc+1\right)^2}{c^2\left(ca+1\right)}+\frac{b\left(ca+1\right)^2}{a^2\left(ab+1\right)}\ge6\)  (điều phải chứng minh)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(a=b=c=1\)

oOo lê ngân oOo
26 tháng 3 2016 lúc 9:17

mới học lớp 5  thôi

Phạm Hồ Thanh Quang
Xem chi tiết
Neet
Xem chi tiết
Vũ Đình Thái
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 12 2020 lúc 20:41

\(P=\dfrac{\left(a^2+abc\right)^2}{a^2b^2+2abc^2}+\dfrac{\left(b^2+abc\right)^2}{b^2c^2+2a^2bc}+\dfrac{\left(c^2+abc\right)}{a^2c^2+2ab^2c}\)

\(P\ge\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{\left(ab+bc+ca\right)^2}\)

\(P\ge\dfrac{\left[a^2+b^2+c^2+3abc\right]^2}{\left(ab+bc+ca\right)^2}\)

Do đó ta chỉ cần chứng minh \(\dfrac{a^2+b^2+c^2+3abc}{ab+bc+ca}\ge2\)

Ta có: \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)

\(\Leftrightarrow3abc\ge4\left(ab+bc+ca\right)-9\)

\(\Rightarrow\dfrac{a^2+b^2+c^2+3abc}{ab+bc+ca}\ge\dfrac{a^2+b^2+c^2+4\left(ab+bc+ca\right)-9}{ab+bc+ca}\)

\(=\dfrac{\left(a+b+c\right)^2-9+2\left(ab+bc+ca\right)}{ab+bc+ca}=2\) (đpcm)

Nguyễn Bá Huy h
5 tháng 6 2021 lúc 18:08

sai cơ bản rồi bạn ơi : a(a+bc)^2 không bằng dc (a^2+abc)^2

Khách vãng lai đã xóa