Hình như thiếu chứng minh cái j r kìa bạn ơi
Hình như thiếu chứng minh cái j r kìa bạn ơi
CMR: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Cho a,b,c là cạnh của một tam giác . CMR\(\left(ab+bc+ca\right)2>a^2+b^2+c^2\)
Cho các số a,b,c khác 0 thỏa mãn ab + ac + bc = 1.Tính giá trị của biểu thức sau:
P=\(\dfrac{\left(a+b+c-abc\right)^2}{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)
Giúp với ạ!Thanks!
Bài 1: Cho các số thực dương a,b,c.CMR:
\(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\ge36\left(ab+bc+ca\right)\)
Bài 2: Cho 3 số thực a, b, c.CMR:
\(a^2+b^2+c^2+a^2b^2c^2\ge2\left(ab+bc+ca\right)\)
Giúp t vs!!!
Chứng minh rằng với a,b,c > 0 thì \(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)
Help me!
Cho a,b,c thỏa mãn ab+bc+ca =1. Chứng minh rằng
\(\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}=\dfrac{2}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\)
Cho các số thực dương a, b, c thỏa mãn ab + bc + ca = abc. Chứng minh rằng \(\sqrt{\dfrac{a.\left(a+c\right)}{a+bc}}+\sqrt{\dfrac{b.\left(b+c\right)}{b+ac}}=\sqrt{a+b}\)
Cho a , b , c la ba canh cua mot tam giac . CMR
\(2\left(ab+bc+ac\right)>a^2+b^2+c^2\)
Cho a,b,c là 3 cạnh của 1 tam giác CMR : \(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)