Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Phương Uyên
Xem chi tiết
Nguyễn Hoàng Tiến
Xem chi tiết
Cô Hoàng Huyền
28 tháng 8 2016 lúc 16:00

a. Đặt \(S_{AOB}=c^2;S_{BOC}=a^2;S_{COA}=b^2\Rightarrow S_{ABC}=a^2+b^2+c^2\)

Ta có \(\frac{AM}{OM}=\frac{S_{ABC}}{S_{BOC}}=\frac{a^2+b^2+c^2}{a^2}=1+\frac{b^2+c^2}{a^2}\)

Vậy thì \(\frac{OA}{OM}=\frac{AM}{OM}-1=\frac{b^2+c^2}{a^2}\Rightarrow\sqrt{\frac{OA}{OM}}=\sqrt{\frac{b^2+c^2}{a^2}}\ge\frac{1}{\sqrt{2}}\left(\frac{b}{a}+\frac{a}{b}\right)\)

Tương tự, ta có: \(\sqrt{\frac{OA}{OM}}+\sqrt{\frac{OB}{ON}}+\sqrt{\frac{OC}{OP}}\ge\frac{1}{\sqrt{2}}\left(\frac{a}{b}+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}\right)\ge\frac{1}{\sqrt{2}}.6=3\sqrt{2}\)

Nguyễn Văn Kim
Xem chi tiết
Vũ Ngọc Diệp
Xem chi tiết
Nguyễn Hoàng Tiến
Xem chi tiết
Cô Hoàng Huyền
26 tháng 8 2016 lúc 9:48

Trước hết ta chứng minh \(\frac{OA}{AM}+\frac{OB}{BN}+\frac{OC}{CP}=1\)

Thậy vậy \(\frac{OM}{AM}+\frac{ON}{BN}+\frac{ON}{CP}=\frac{S_{BOC}}{S_{ABC}}+\frac{S_{AOC}}{S_{ABC}}+\frac{S_{AOB}}{S_{ABC}}=1\)

Đặt \(\frac{OM}{AM}=x;\frac{ON}{BN}=y;\frac{OP}{CP}=z\Rightarrow x+y+z=1.\)

Khi đó \(a=\frac{OA}{OM}=\frac{AM-OM}{OM}=\frac{AM}{OM}-1=\frac{1}{x}-1\Rightarrow x=\frac{1}{a+1}\)

Tương tự \(\frac{OB}{ON}=b\Rightarrow y=\frac{1}{b+1};\frac{OC}{OP}=c\Rightarrow z=\frac{1}{c+1};\)

Vậy thì \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1.\)

Nếu cả a, b, c đều nhỏ hơn 2 thì \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}>\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\) (Vô lý)

Vậy phải tồn tại một tỉ số không nhỏ hơn 2.

Nếu cả a, b, c đều lớn hơn 2 thì \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}< \frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\) (Vô lý)

Vậy phải tồn tại một tỉ số không lớn hơn 2.

꧁WღX༺
Xem chi tiết
Vũ Minh Hằng
Xem chi tiết
nguyen
Xem chi tiết
Bao Nguyen Trong
Xem chi tiết