Cho hàm số y = \(\frac{x^2-mx+m}{x-m}\). Hãy xác định m sao cho:
a) Đồ thị của hàm số không cắt trục tung
b) Đồ thị của hàm số không cắt trục hoành
c) Đồ thị của hàm số cắt trục hoành tại 2 điểm phân biệt
Cho hàm số y = \(\frac{x^2-mx+m}{x-m}\). Hãy xác định m sao cho:
a) Đồ thị của hàm số không cắt trục tung
b) Đồ thị của hàm số không cắt trục hoành
c) Đồ thị của hàm số cắt trục hoành tại 2 điểm phân biệt
cho hàm số y=(2m+1)x-m+3 (1) a,xác định giá trị của m để đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng. b,xác định giá trị của m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng -3. c,vẽ đồ thị của hàm số ứng với giá trị của m vừa tìm được ở các câu a và b trên cùng hệ trục toạ độ oxy.tìm giao điểm của hai đường thẳng vừa vẽ được. d,tìm điểm cố định mà đồ thị hàm số (1) luôn đi qua với mọi m
a: Bạn bổ sung đề đi bạn
b: thay x=-3 và y=0 vào (d), ta được:
\(-3\left(2m+1\right)-m+3=0\)
=>-6m-3-m+3=0
=>-7m=0
=>m=0
d: y=(2m+1)x-m+3
=2mx+x-m+3
=m(2x-1)+x+3
Tọa độ điểm cố định mà (1) luôn đi qua là:
\(\left\{{}\begin{matrix}2x-1=0\\y=x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=3+\dfrac{1}{2}=\dfrac{7}{2}\end{matrix}\right.\)
cho hàm số y = (m-1)x + m - 5
a) xác định m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 3
b) xác định m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng -1
c) xác định m để đồ thị hàm số đi qua gốc tọa độ
a: Thay x=0 và y=3 vào y=(m-1)x+m-5, ta được:
\(0\cdot\left(m-1\right)+m-5=3\)
=>m-5=3
=>m=8
b: Thay x=-1 và y=0 vào y=(m-1)x+m-5, ta được:
\(-\left(m-1\right)+m-5=0\)
=>-m+1+m-5=0
=>-4=0(vô lý)
c: Thay x=0 và y=0 vào y=(m-1)x+m-5, ta được:
\(0\left(m-1\right)+m-5=0\)
=>m-5=0
=>m=5
cho hàm số y= mx+m-1.tìm m để
a) Đồ thị hàm số đi qua điểm A(-3; -1).
b) Đồ thị hàm số cắt trục tung tại điểm có tung độ là 2.
c) Đồ thị hàm số cắt trục hoành tại điểm có hoành độ là 3.
a. Để đồ thị qua A
\(\Rightarrow-1=-3m+m-1\)
\(\Leftrightarrow m=0\)
b. Để đồ thị cắt trục tung tại điểm có tung độ 2
\(\Rightarrow m-1=2\)
\(\Leftrightarrow m=3\)
c. Để đồ thị cắt trục hoành tại điểm có hoành độ 3
\(\Rightarrow0=3m+m-1\)
\(\Leftrightarrow m=\dfrac{1}{4}\)
Cho hàm số y = 3x + b. Hãy xác định hệ số b, trong mỗi trường hợp sau :
a) Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng -3 ;
b) Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng -4 ;
c) Đồ thị hàm số đi qua điểm M(-1 ; 2).
Cho hàm số y=(m-1)x+m
a) Xác định m để đồ thị hàm số cắt trục tung điểm có tung độ bằng 3, cắt trục hoành tại điểm có hoành độ bằng 3
b) Vẽ đồ thị hàm số của hai hàm số ứng với m tìm được câu a
c) Gọi giao điểm của 2 đồ thị với trục hoành lần lượt là A;B giao điểm của 2 đồi thị là C. Tính chu vi và diện tích của tam giác ABC
Trước hết xin nói ngay rằng đồ thị của hàm số y = (2x - 1)(x - 1) là một parabol, không có đường tiệm cận nào cả.
Có lẽ bạn muốn nói đến hàm số y = (2x - 1)/(x - 1).
Nếu đúng vậy thì đồ thị của hàm số là một hyperbol vuông góc có hai đường tiệm cận là đường thẳng x = 1 và đường thẳng y = 2.
Giao điểm của hai đường tiệm cận là I(1; 2).
Gọi M(x,y) là một điểm trên đồ thị. Hệ số góc của đường thẳng IM là
m = (y - 2)/(x - 1) = {[(2x - 1)/(x - 1)] - 2}/(x - 1) = [(2x - 1) - 2(x - 1)]/(x - 1)²
m = 1/(x - 1)²
Hệ số góc của đường tiếp tuyến Mt với đồ thị tại M(x,y) là
m' = dy/dx = -1/(x - 1)²
Muốn cho MI và Mt thẳng góc với nhau thì điều kiện cần và đủ là
mm' = -1
-1/(x - 1)^4 = -1
(x - 1)^4 = 1
(x - 1)² = 1
x - 1 = ±1
x = 0 hay x = 2
Có 2 điểm M thỏa mãn điều kiện của bài toán là (0; 1) và (2; 3)
Cho hàm số y = (a - 2)x + a
a) Xác định a để đồ thị hàm số cắt trục tung tại điểm có tung độ = 2.
b) Xác định giá trị của a để đồ thị hàm số cắt trục hoành tại điểm có hoành độ = -1.
c) Vẽ đồ thi của 2 hàm số ứng với giá trị của a tìm được ở câu a, b trên cùng hệ trực tọa độ Oxy. Và tìm tọa độ giao điểm của 2 đường thẳng vừa vẽ được.
a: Thay x=0 và y=2 vào (d), ta được:
a=2
b: Thay x=-1 và y=0 vào (d), ta được:
\(-\left(a-2\right)+a=0\)
\(\Leftrightarrow2=0\)(vô lý)
Bài 2: Cho hàm số: y = (m + 5)x – m Xác định giá trị của tham số m để đồ thị hàm số: a) Cắt trục hoành tại điểm có hoành độ bằng 3 b) Cắt trục tung tại điểm có tung độ bằng -4
cho hàm số y=3x+b xác định b biết
a, đồ thị hàm số cắt trục tung tại điểm có tung độ = -2
b, đồ thị hàm số đi qua điểm M[ -2, 1]
c,đồ thị hàm số cắt đừng thẳng y = x-2 tại điểm có hoành độ bằng 3
y=3x+b
a)Vì hàm số cắt trục tung tại điểm có tung độ = -2 nên x=0,y=-2
Thay x=0,y=-2 vào hàm số ta đc:
3.0+b=-2
\(\Rightarrow\)b=-2
b)Để đồ thị hàm số đi qua điểm M[ -2, 1] nên x=-2,y=1
2.(-2)+b=1\(\Rightarrow\)-4+b=1\(\Rightarrow\)b=5
c) thay x=3,y=x-2 ta đc :
y=1-2=-1
Thay x=1 và y=-1 vào y=3x+b ta đc
3.1+b=-1 \(\Rightarrow\)3+b=-1 \(\Rightarrow\)b=-4
Cho hàm số y=(m-1)x+m
a) Xác định m để đồ thij hàm số cắt trục tung điểm có tung độ bằng 3, cắt trục hoành tại điểm có tung độ bằng 3
b) Vẽ đồ thị hàm số của hai hàm số ứng với m tìm được câu a
c) Gọi giao điểm của 2 đồ thị với trục hoành lần lượt là A; B giao điiểm của hai đồ thị là C. Tính chu vi và diện tích của tam giác ABC
Trước hết xin nói ngay rằng đồ thị của hàm số y = (2x - 1)(x - 1) là một parabol, không có đường tiệm cận nào cả.
Có lẽ bạn muốn nói đến hàm số y = (2x - 1)/(x - 1).
Nếu đúng vậy thì đồ thị của hàm số là một hyperbol vuông góc có hai đường tiệm cận là đường thẳng x = 1 và đường thẳng y = 2.
Giao điểm của hai đường tiệm cận là I(1; 2).
Gọi M(x,y) là một điểm trên đồ thị. Hệ số góc của đường thẳng IM là
m = (y - 2)/(x - 1) = {[(2x - 1)/(x - 1)] - 2}/(x - 1) = [(2x - 1) - 2(x - 1)]/(x - 1)²
m = 1/(x - 1)²
Hệ số góc của đường tiếp tuyến Mt với đồ thị tại M(x,y) là
m' = dy/dx = -1/(x - 1)²
Muốn cho MI và Mt thẳng góc với nhau thì điều kiện cần và đủ là
mm' = -1
-1/(x - 1)^4 = -1
(x - 1)^4 = 1
(x - 1)² = 1
x - 1 = ±1
x = 0 hay x = 2
Có 2 điểm M thỏa mãn điều kiện của bài toán là (0; 1) và (2; 3)
2, Giao điểm của hai đường tiệm cận là I(1; 2).
Gọi M(x,y) là một điểm trên đồ thị. Hệ số góc của đường thẳng IM là
m = (y - 2)/(x - 1) = {[(2x - 1)/(x - 1)] - 2}/(x - 1) = [(2x - 1) - 2(x - 1)]/(x - 1)²
m = 1/(x - 1)²
Hệ số góc của đường tiếp tuyến Mt với đồ thị tại M(x,y) là
m' = dy/dx = -1/(x - 1)²
Muốn cho MI và Mt thẳng góc với nhau thì điều kiện cần và đủ là
mm' = -1
-1/(x - 1)^4 = -1
(x - 1)^4 = 1
(x - 1)² = 1
x - 1 = ±1
x = 0 hay x = 2
Có 2 điểm M thỏa mãn điều kiện của bài toán là (0; 1) và (2; 3)