Cho \(\Delta ABC\) vuông tại A, đường cao AH và trung tuyến AM. Biết AH = 12cm, BH = 9cm, CH = 16cm. Tính các tỉ số lượng giác của \(\widehat{HAM}\).
Cho \(\Delta ABC\) vuông tại A, đường cao AH và trung tuyến AM. Biết AH = 12cm, BH = 9cm, CH = 16cm. Tính các tỉ số lượng giác của \(\widehat{HAM}\).
cho tam giác ABC có đường AH, trung tuyến AM. Biết BH=9cm, HC=16cm. Tính tan\(\widehat{HAM}\).
cho tam giác ABC có đường AH, trung tuyến AM. Biết BH=9cm, HC=16cm. Tính tan góc HAM.
Xét ΔABC vuông tại A, có đường cao AH:
\(AH^2=BH.HC\\ \Leftrightarrow AH^2=9.16\\ \Leftrightarrow AH^2=144\\ \Leftrightarrow AH=12cm\)
Có AM là đường trung tuyến
\(\Rightarrow BM=MC=\dfrac{1}{2}BC=\dfrac{9+16}{2}=12,5cm\\ \Rightarrow HM=BM-BH=12,5-9=3,5cm\\ \Rightarrow\tan HAM=\dfrac{HM}{AH}=\dfrac{3,5}{12}\)
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH= 4cm, CH= 9cm.
a) Tính độ dài đường cao AH và A B C ⏜ của tam giác ABC.
b) Vẽ đường trung tuyến AM M ∈ B C của tam giác ABC, tính AM và diện tích tam giác AHM
a , Δ A B C , A ⏜ = 90 0 , A H ⊥ B C g t ⇒ A H = B H . C H = 4.9 = 6 c m Δ A B H , H ⏜ = 90 0 g t ⇒ tan B = A H B H = 6 4 ⇒ B ⏜ ≈ 56 , 3 0 b , Δ A B C , A ⏜ = 90 0 , M B = M C g t ⇒ A M = 1 2 B C = 1 2 .13 = 6 , 5 c m S Δ A H M = 1 2 M H . A H = 1 2 .2 , 5.6 = 7 , 5 c m 2
Cho tam giác ABC vuông tại A, đường cao AH, trung tuyến AM,tính AM,HM,BH,CH,AB biết AH = 12cm,BC = 25cm
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 4cm, CH = 9cm
a) Tính độ dài đường cao AH và góc ABC của tam giác ABC
b) Vẽ đường trung tuyến AM, ( M thuộc BC ) của tam giác ABC. Tính AM và diện tích của tam giác AHM
1/ Cho tam giác ABC vuông tại A có đường cao AH và đường trung tuyến AM
a/ Chứng minh AH2 = BH . CH
b/ Tính diện tích tam giác AMH , biết BH = 4cm , CH = 9cm
a,
Xét Δ AHB và Δ CAB, có :
\(\widehat{AHB}=\widehat{CAB}=90^o\)
\(\widehat{ABH}=\widehat{CBA}\) (góc chung)
=> Δ AHB ∾ Δ CAB (g.g)
=> \(\dfrac{AH}{CA}=\dfrac{HB}{AB}\)
=> \(\dfrac{AB}{CA}=\dfrac{HB}{AH}\)
Xét Δ AHB và Δ CHA, có :
\(\widehat{AHB}=\widehat{CHA}=90^o\)
\(\dfrac{AB}{CA}=\dfrac{HB}{AH}\) (cmt)
=> Δ AHB ∾ Δ CHA (g.g)
=> \(\dfrac{AH}{CH}=\dfrac{HB}{HA}\)
=> \(AH^2=HB.CH\)
b, Ta có : \(AH^2=BH.CH\) (cmt)
=> \(AH^2=4.9\)
=> \(AH^2=36\)
=> AH = 6
Xét Δ AHB, có :
\(AB^2=AH^2+BH^2\)
=> \(AB^2=6^2+4^2\)
=> \(AB^2=52\)
=> AB = 7,2 (cm)
Xét Δ AHC, có :
\(AC^2=AH^2+CH^2\)
=> \(AC^2=6^2+9^2\)
=> \(AC^2=117\)
=> AC = 10,8 (cm)
Xét Δ ABC, có :
\(BC^2=AB^2+AC^2\)
=> \(BC^2=7,2^2+10,8^2\)
=> \(BC^2=168,48\)
=> BC = 12,9 (cm)
Ta có : MC = \(\dfrac{1}{2}BC\) (M là trung điểm BC do có đường trung tuyến AM)
=> MC = 6,45 (cm)
Ta có : BC = BH + HM + MC
=> 12,9 = 4 + HM + 6,45
=> HM = 12,9 - 4 - 6,45
=> HM = 2,45 (cm)
Xét Δ AMH vuông tại H, có :
\(S_{\Delta AMH}=\dfrac{1}{2}AH.HM\)
=> \(S_{\Delta AMH}=\dfrac{1}{2}.6.2,45\)
=> \(S_{\Delta AMH}=7,35\left(cm\right)\)
Bài tập :
1/ Cho ∆ABC vuông tại B biết AB= 9cm; AC= 15cm. Tính các tỉ số lượng giác của 𝐴̂.
2/ Cho ∆ABC vuông tại A, đường cao AH. Biết AB= 12cm; BH= 6 cm. viết các tỉ số lượng giác của 𝐵̂ rối suy ra các tỉ số lượng giác của 𝐶̂?
3/ Cho ∆ MNP vuông tại M, đường cao MI. Biết 𝑁̂= 60độ ; NP=5cm.Tính MN và MP .(Sử dụng bảng tỉ số lượng giác của các góc đặc biệt để tính TSLG của góc 60độ)
Cho \(\Delta ABC\)vuông tại A có AB = 15 cm. AC = 20 cm. Vẽ đường cao AH và trung tuyến AM. Tính các tỉ số lượng giác của \(\widehat{AMH}\)