cho x-y=1 tính giá trị biểu thức C=3x^2-3xy+2x-5y
Cho đa thức M=2x - 3xy² + 1 , a)tính giá trị của M tại x= - 2x - 3xy² +1 b)tính giá trị của M tại x= -2 và y=3 c)Tính (2x - 3y) (3x + 4y);d) (x²y - 5y² + 3xy) (-2xy) MONG MN GIÚP Ạ
a: M=2(-2x-3xy^2+1)-3xy^2+1
=-4x-6xy^2+2-3xy^2+1
=-4x-9xy^2+3
b: Thay x=-2 và y=3 vào M, ta được:
M=2*(-2)-3*(-2)*3^2+1
=-4+1+6*9
=54-3
=51
cho x+y=0.tính giá trị biểu thức 3xy(x+y)+2x^5y^3+2x^4y^4+9
Ta có x + y = 0 => x = -y
Khi đó 3xy(x + y) + 2x5y3 + 2x4y4 + 9
= 3xy(-y + y) + 2(-y)5.y3 + 2(-y)4y4 + 9
= 0 - 2y8 + 2y8 + 9
= 9
tính giá trị biểu thức A =3x^2 +5y^3 -5xy^2 -3xy +2017 biết x-y = 0
A = 3x2 + 5y3 - 5xy2 - 3xy + 2017
= (3x2 - 3xy) + (5y3 - 5xy2) + 2017
= 3x(x - y) + 5y2(y - x) + 2017
= 3x(x - y) - 5y2(x - y) + 2017
= (x - y)(3x - 5y2) + 2017
= 0 + 2017 = 2017 (Vì x - y) = 0
Tính giá trị các biểu thức sau: 1) 3x²–5y+1 tại x=1/3 y=-1/5 2) 5x²y+3xy–2xy² tại x=-2y=-1/2 Giúp mình nhé
1, Thay x = 1/3 ; y = -1/5 ta được
\(=\dfrac{3.1}{9}-5\left(-\dfrac{1}{5}\right)+1=\dfrac{1}{3}+2=\dfrac{7}{3}\)
2, Thay x = -2 ; y = -1/2 ta được
\(=5.4\left(-\dfrac{1}{2}\right)+3\left(-2\right)\left(-\dfrac{1}{2}\right)-\dfrac{2\left(-2\right).1}{4}\)
\(=-10+3+1=-6\)
bài 1 chứng minh đẳng thức sau
x(x+1)(x+2)=x^3+3x^2+2x
bài 2 tìm x biết
(3x-2)(4x-5)-(2x-1)(6x+2)=0
bài 3 chứng minh rằng giá trị của biểu thức P không phụ thuộc giá trị của biến
P=-3xy(-x+5y)+5y^2(3x-2y)+2(5y^3-3/2x^2y+7)
bài 4 thực hiện phép tính
5x(12x+7)-(3x+1)(20x-5)
Cho tỉ lệ thức \(\dfrac{x}{y}=\dfrac{2}{3}\). Tính giá trị của các biểu thức sau:
\(A=\dfrac{x+5y}{3x-2y}-\dfrac{2x-3y}{4x+5y}\)
\(B=\dfrac{2x^2-xy+3y^2}{3x^2+2xy+y^2}\)
Lời giải:
$\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:
$x=2k; y=3k$
Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.
$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$
tính giá trị của các biểu thức sau tại | x | = 1/2 , |y| = 1
a) A = 2x mũ 2 - 3x + 5
b) 2x mũ 2 - 3xy + y mũ 2
a: Trường hợp 1: x=1/2
\(A=2\cdot\dfrac{1}{4}-3\cdot\dfrac{1}{2}+5=\dfrac{1}{2}-\dfrac{3}{2}+5=3\)
Trường hợp 2: x=-1/2
\(A=2\cdot\dfrac{1}{4}-3\cdot\dfrac{-1}{2}+5=\dfrac{1}{2}+\dfrac{3}{2}+5=2+5=7\)
b: Trường hợp 1: x=1/2; y=1
\(B=2\cdot\left(\dfrac{1}{2}\right)^2-3\cdot\dfrac{1}{2}\cdot1+1^2=\dfrac{1}{2}-\dfrac{3}{2}+1=-1+1=0\)
Trường hợp 2: x=1/2; y=-1
\(B=2\cdot\dfrac{1}{4}-3\cdot\dfrac{1}{2}\cdot\left(-1\right)+1=3\)
Trường hợp 3: x=-1/2; y=1
\(B=2\cdot\dfrac{1}{4}-3\cdot\dfrac{-1}{2}\cdot1+1=\dfrac{1}{2}+\dfrac{3}{2}+1=3\)
Trường hợp 4: x=-1/2; y=-1
\(B=2\cdot\dfrac{1}{4}-3\cdot\dfrac{-1}{2}\cdot\left(-1\right)+1=\dfrac{1}{2}-\dfrac{3}{2}+1=0\)
Bài1;
a, cho x-y=7 . Tính giá trị biểu thức
M= x^2.(x+1)-y^2.(y-1) + xy - 3xy .(x-y+1)-95
b, cho x+y =5. Tính gtri biểu thức
N= 3x^2-2x +3y^2-2y+6xy -100
a: \(M=x^3+x^2-y^3+y^2+xy-3xy-95\)
\(=\left(x-y\right)^3+\left(x-y\right)^2-95\)
\(=7^3+7^2-95=297\)
b: \(N=3\left[\left(x+y\right)^2-2xy\right]-2\left(x+y\right)+6xy-100\)
\(=3\cdot\left(25-2xy\right)-10+6xy-100\)
=75-6xy-10+6xy-100
=-35
Tính giá trị của biểu thức sau:
a) \(3x-5y+1\) tại \(x=\dfrac{1}{3}\) ; \(y=-\dfrac{1}{5}\) b) \(3x^2-2x-5\) tại \(x=1\) ; \(x=-1\)
\(a.3x-5y+1=3.\dfrac{1}{3}-5.\left(-\dfrac{1}{5}\right)+1=1+1+1=3\)
b.x=1
\(\Rightarrow3.1^2-2.1-5=-4\)
x=-1
\(\Rightarrow3.\left(-1\right)^2-2.\left(-1\right)-5=3+2-5=0\)